A SMALL ULTRAFILTER NUMBER AT EVERY SINGULAR CARDINAL

TOM BENHAMOU AND SITTINON JIRATTIKANSAKUL

Abstract

We obtain a small ultrafilter number at $\aleph_{\omega_{1}}$. Moreover, we develop a version of the overlapping strong extender forcing with collapses which can keep the top cardinal κ inaccessible. We apply this forcing to construct a model where κ is the least inaccessible and V_{κ} is a model of GCH at regulars, failures of SCH at singulars, and the ultrafilter numbers at all singulars are small.

1. INTRODUCTION

Some of the most basic mathematical theorems rely on the possibility to distinguish between small and large sets. For example, the Lebesgue criteria for Riemann integratability states that a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable, if and only if the set of its discontinuity points is small, which in this case means of Lebesgue measure zero. Smallness has many other interpretations: small cardinalities in set theory, nowhere dense sets in topology, probability zero events in probability theory, or polynomial and linear functions in computability theory. An abstract approach to define a notion of largeness for the subsets of a given set X is filters, which is simply a set $F \subseteq P(X)$ that contains all the large subsets of X. Formally speaking, we require the following 3 axioms which say that F is a filter over X :
(1) $X \in F, \emptyset \notin F$. (non empty and non-degenerate)
(2) $A, B \in F \Rightarrow A \cap B \in F$. (closed under intersection)
(3) $(A \in F \wedge A \subseteq B) \Rightarrow B \in F$. (upward closed to inclusion)

For a fixed filter F, we may consider small sets as the sets whose complements are in F. Note that for many filters, there are sets X which are neither small, nor large, namely $X \notin F$ and also $X^{c} \notin F$ e.g. in probability, there are sets X such that $0<\mathbb{P}(X)<1$ and thus are neither small (i.e. $\mathbb{P}(X)=0$), nor large (i.e. $\mathbb{P}(X)=1)$.

Ultrafilters are those filters which do determine that every set is either large or small. Namely, a filter U over X is an ultrafilter if for every $B \subseteq X$ either $B \in U$ or $X \backslash B \in U$. Most of the non-trivial examples of ultrafilters involve the Axiom of choice and are thus highly non-constructive. However,

[^0]they have been proven to be useful in many areas such as Analysis, Topology, Model theory, Algebra, and combinatorics. For example, Nonstandard analysis [13] is an alternative approach to study analysis and more sophisticated mathematics. The $\epsilon-\delta$ definitions in analysis can be replaced by using more concrete objects, so-called infinitesimals, in a nonstandard universe of nonstandard reals, which contain all reals. One of the constructions of a nonstandard universe is through an ultraproduct construction, which requires a non-trivial ultrafilter over \mathbb{N}. there is a more concrete and the Stone-Čech compactification in topology [21],[3]. Studying the combinatorial nature of ultrafilters is important to obtain a stronger understanding of those applications, but are not limited to that and can be used in several results in infinitary combinatorics (see for example [15]). One specific combinatorial property we are interested in this paper is the ultrafilter number, which has been extensively studied in recent years, as we will see in the next subsection:
1.1. The ultrafilter number. The ultrafilter number for a cardinal number κ, determines how many sets one needs in order to generate an ultrafilter on κ. Let us be more precise here:

Definition 1.1. Let U be an ultrafilter over a cardinal κ, define:
(1) a subset of an ultrafilter $U, \mathcal{B} \subseteq U$ is called a base if $\forall A \in U$ there is $B \in \mathcal{B}$ such that $B \subseteq^{*} A^{1}$.
(2) The characteristics of U is $\operatorname{Ch}(U):=\min (|\mathcal{B}| \mid \mathcal{B}$ is a base for $U)$
(3) The ultrafilter number $\mathfrak{u}_{\kappa}:=\min (C h(U) \mid U \text { is a uniform ultrafilter over } \kappa)^{2}$

The number \mathfrak{u}_{κ} is a generalized characteristic cardinal of the continuum as it is known that for every $\kappa, \kappa^{+} \leq \mathfrak{u}_{\kappa} \leq 2^{\kappa}$. As with other characteristic cardinals, the basic question is whether they can be (namely, is it consistent to) separated from the continuum. Kunen (Exercise (A10) of Chapter XIII in [16]) proved that using a suitable iteration (of Mathias forcing) over a model of CH, one can force a model with $2^{\aleph_{0}}>\mathfrak{u}_{\aleph_{0}}$. Kunen's method does not generalize to greater cardinals, and raised whether it is consistent to have $\mathfrak{u}_{\aleph_{1}}<2^{\aleph_{1}}$. This question is open and has been so since the 70s.

Assuming stronger assumptions on the cardinal κ, which are known as large cardinal assumptions, Gitik and Shelah [12, Lemma 1.9] forced the existence of a cardinal $\aleph_{0}<\kappa$ with $2^{\kappa}>\mathfrak{u}_{\kappa}$. This cardinal κ is extremely greater than ω_{1} and do not lay near the area where other mathematics occurs. The large cardinal assumption was then improved by Brooke-Taylor, Fischer, Friedman, and Montoya [2] to a supercompact cardinal, where they used a similar iteration to the one Kunen used, but still considered an extremely large cardinal. Recently, a remarkable result of Raghavan and Shelah [20] established the consistency of $\mathfrak{u}_{\kappa}<2^{\kappa}$ for $\kappa=2^{\aleph_{0}}$ where they started with a much smaller large cardinal- a measurable cardinal. However, in their model

[^1]$2^{\aleph_{0}}$ is still very large. They also obtained the result on the much smaller cardinal $\aleph_{\omega+1}$ but starting again from a supercompact cardinals.

While all the work mentioned above concerns the ultrafilter number for regular cardinals, a different line of research about the ultrafilter number on singular cardinals has also been studied in the last decade. The first results in this direction uses PCF theory and is due to Shelah and Garti [9, Theorem 1.4]:

Theorem 1.2. Suppose that $\kappa=c f(\lambda)<\lambda$ are two cardinals, λ is strong limit, and $\left\langle\lambda_{i} \mid i<\kappa\right\rangle$ is an unbounded and increasing sequence in λ such that:
(1) There is a uniform ultrafilter E over κ.
(2) Each U_{i} is a uniform ultrafilter over λ_{i} carrying a strong-base $\left\langle A_{i, \beta}\right|$ $\left.\beta<\theta_{i}\right\rangle .{ }^{3}$ Then there is a uniform ultrafilter U over λ such that $C h(U) \leq t c f\left(\prod_{i<\kappa} \lambda_{i},<_{E}\right) \cdot t c f\left(\prod_{i<\kappa} \theta_{i},<_{E}\right)$
This theorem provides a way to construct a uniform ultrafilter with a small base, and one can apply in is various models where these $t c f$'s have known values. For example, for any fixed κ, Garti and Shelah [8] have a model where $2^{\lambda}>\lambda^{+}$, a sequence of measurables $\left\langle\lambda_{i} \mid i<\kappa\right\rangle, 2^{\lambda_{i}}=\lambda_{i}^{+}$and $t c f\left(\prod_{i<\kappa} \lambda_{i},<_{E}\right)=t c f\left(\prod_{i<\kappa} \lambda_{i}^{+},<_{E}\right)=\lambda^{+}$. The measures U_{i} can be any normal ultrafilter over λ_{i}, then by normality and $2^{\lambda_{i}}=\lambda_{i}^{+}$when can get $\theta_{i}=\lambda_{i}^{+}$. So they obtained the following:

Theorem 1.3. Suppose that there is a supercompact cardinal, then there is a model with a singular cardinal λ such that $\mathfrak{u}_{\lambda}=\lambda^{+}$and $2^{\lambda}>\lambda^{+}$.

Then Garti, Magidor and Shelah [7] used the single extender-based forcing to get the following:

Theorem 1.4. Suppose that $\kappa<\lambda$ are such that κ is strong and $\lambda>\kappa$ is a limit of measurable cardinals $\left\langle\lambda_{i} \mid i<\theta\right\rangle$. Then in the generic extension by the extender based forcing with E being a (κ, λ)-extender, for every $i<\theta$, there are ω-sequences of measurables $\left\langle\lambda_{i, n} \mid n<\omega\right\rangle$ (corresponding to the measure $\left.U_{\lambda_{i}}\right)$ in κ such that tcf $\left(\prod_{n<\omega} \lambda_{i, n} / J_{b d}\right)=\lambda_{i}^{+} .2^{\kappa} \geq \lambda$ and $G C H_{<\kappa}$. In particular, there are ultrafilters U_{i} over κ such that $C h\left(U_{i}\right)=\lambda_{i}^{+}$.

From the previous model we can put collapses and obtain other values of $C h(U)$.

It is natural to use Magidor-Radin extender-based forcing of Merimovich [18] to push these results to uncountable cofinalities. Indeed, Cummings and Morgan [5] manneged to obtain it and proved the following:

Theorem 1.5. Let $\rho<\kappa<\lambda$ where ρ is regular and uncountable, λ is the least inaccessible limit of measurable cardinals greater than κ, and there is a Mitchell increasing sequence $\left\langle E_{i} \mid i<\rho\right\rangle$ such that each extender E_{i}

[^2]witnesses that κ is λ-strong and is such that ${ }^{\kappa} U l t\left(V, E_{i}\right) \subseteq U l t\left(V, E_{i}\right)$. Then there is a cardinal-preserving generic extension in which $c f(\kappa)=\rho, 2^{\kappa}=\lambda$, and $S p_{\chi}(\kappa)$ is unbounded in λ.

Finally, Gitik Shelah and Garti [6], brought everything down to \aleph_{ω} and got the result for \aleph_{ω}. In the first part of this paper we will use the forcing [14] to tackle the question of separating $\mathfrak{u}_{\aleph_{\omega_{1}}}$ and $2^{\aleph_{\omega_{1}}}$ and prove the following:
Theorem A. Suppose κ is a singular cardinal, $\rho<\kappa$ is regular and $\left\langle\kappa_{i}\right| i<$ $\rho\rangle$ is a sequence of strong cardinals with limit κ and $\rho<\kappa_{0}$. Suppose that $\vec{E}=\left\langle E_{i} \mid i<\rho\right\rangle$ is a Mitchell increasing sequence of extenders witnessing that κ_{i} is κ^{++}-strong, then after forcing $\mathbb{P}_{\vec{E}}$ we obtain a model where $\kappa=$ $\aleph_{\omega_{1}}, 2^{\kappa}>\aleph_{\omega_{1}+1}$ and $\mathfrak{u}_{\kappa}=\aleph_{\omega_{1}+1}$.

The proof generalizes ideas similar to the one from [6], but also applies for the countable case. Also, we provide some missing details in the proof from [6].
1.2. Overlapping Strong Extenders of long length. As mentioned in the previous subsection, many results, both about the ultrafilter number and others, are known to hold at extremely large cardinals. One important task is to verify whether this results hold at more down to earth cardinals. This problem is a typical problem when we force with so-called Prikry-type forcings. The idea is to start with a large cardinal and to force a model where we destroy some properties of this large cardinal while other properties survive the forcing. This leads to solutions of many important open problems, such as the Singular Cardinal Hypothesis [17]. This type of forcing is in extensive use in modern set theory. The major disadvantage of such a forcing is that even though the initial large cardinal loses its large cardinal property, it might still be located in a very high spot of the mathematical universe, namely above many other large cardinals, and therefore, irrelevant to solve problems in the lower cardinals. Fortunately, a mechanism of crossing the gaps between the lower cardinals and the higher ones is also available in some situations. This is the so-called Prikry-type forcing with interleaving collapses, which both preserves the large cardinal properties and brings everything down to much lower cardinal (see for example, Chapter 4 of[10]). While Prikry-type forcings usually singularize a cardinal, some variations of the Radin forcing [19] and of Gitik's overlapping extender-based forcing [1] can keep κ regular. In Section 3, we show how to incorporate collapses with these kinds of forcings and develop the Long Overlapping strong extender with collapses, which is in the spirit of the one from [14] or prior to that of Gitik's overlapping extender based forcing with collapses. The main innovation of our forcing is that it can keep κ inaccessible, and by involving collapses, turn κ into the first inaccessible. This fact is relevant for those problems in set theory seeking for consistency results at the first inaccessible cardinals, and we believe that this forcing might be useful to tackle such problems. For example, we apply this forcing to obtain the following model:

Theorem B. Let κ be the least inaccessible cardinal such that there is a Mitchell increasing sequence $\left\langle E_{i} \mid i<\kappa\right\rangle$ witnessing that each κ_{i} is $\kappa^{++}{ }_{-}$ strong. Then it is consistent that κ is the least inaccessible cardinal, GCH holds for every regular below $\kappa, S C H$ fails for every singular below κ and for $\lambda<\kappa$ singular, $\mathfrak{u}_{\lambda}<2^{\lambda}$.

Convention: $p \geq q$ means p is stronger than q. For functions f and g with $\operatorname{dom}(g) \subseteq \operatorname{dom}(f)$, define $f \oplus g(f$ overwritten by $g)$ as the function h with $\operatorname{dom}(h)=\operatorname{dom}(f), h(x)=g(x)$ for $x \in \operatorname{dom}(g)$ and $h(x)=f(x)$ otherwise.

2. A small Ultrafilter number at $\aleph_{\omega_{1}}$

We start with a basic definition.
Definition 2.1. Let κ be an infinite cardinal and U is a uniform ${ }^{4}$ ultrafilter on κ.
(1) A base for U is a collection $\mathcal{B} \subseteq U$ such that for every $B \in U$, there is $A \in \mathcal{B}$ such that $A \subseteq^{*} B$, namely, $A \backslash B$ is a bounded subset of κ.
(2) $C h(U):=\min \{|\mathcal{B}| \mathcal{B} \subseteq U$ is a base for $U\}$
(3) The ultrafilter number of κ, denoted by \mathfrak{u}_{κ}, is

$$
\min \{C h(U) \mid U \text { is a uniform ultrafilter }\}
$$

By Claim 1.2 of [9], for any infinite $\kappa, \kappa<\mathfrak{u}_{\kappa} \leq 2^{\kappa}$ and if $2^{\kappa}=\kappa^{+}$, then $\mathfrak{u}_{\kappa}=2^{\kappa}$. It is possible to have $C h(U)$ being singular [11]. We say that $\left\langle W, \leq_{W}\right\rangle$ is a pre-order if it is reflexive and transitive. The terms "dense" and "open" take their usual meanings. Let us use some of the definitions of Garti, Gitik, and Shelah from [6]:

Definition 2.2. Let $\left\langle W_{i} \mid i<\lambda\right\rangle$ be a sequence of pre-orders and F be a filter on λ. A Sullam in $\left(\prod_{i<\lambda} W_{i}, F\right)$ is a sequence $\left\langle f_{\alpha} \mid \alpha<\mu\right\rangle \subseteq \prod_{i<\lambda} W_{i}$ such that:
(1) $\left\langle f_{\alpha} \mid \alpha<\mu\right\rangle$ are increasing $\bmod F$, namely, if $\alpha<\beta<\mu$, then

$$
\left\{i<\lambda \mid f_{\alpha}(i)<_{W_{i}} f_{\beta}(i)\right\} \in F
$$

(2) for any list $\left\langle V_{i} \mid i<\lambda\right\rangle$ such that $V_{i} \subseteq W_{i}$ is open dense, there is $\alpha<\mu$ such that

$$
\left\{i<\lambda \mid f_{\alpha}(i) \in V_{i}\right\} \in F
$$

We only focus on the dual filters of the bounded ideal $J_{b d}=\{X \subseteq \lambda \mid$ $|X|<\lambda\}$. The collection of positive sets F^{+}has the usual meaning, namely, if $I_{F}=\{\lambda \backslash X \mid X \in F\}$ is the dual ideal, then $F^{+}:=\left\{X \subseteq \lambda \mid X \notin I_{F}\right\}$.

Let F be a filter over λ and W be a pre-order. A function $g: W \rightarrow F^{+}$ is said to be order preserving when for every $p \leq_{W_{i}} q, g(q) \subseteq g(p)$. We say that g is deciding if for every $A \subseteq \lambda$ and any $w \in W$, there is $w \leq_{W} u$ such that $g(u) \subseteq A$ or $g(u) \subseteq \lambda \backslash A$.

[^3]Definition 2.3. Given a singular cardinal $\lambda=\operatorname{cf}(\mu)<\mu$, a nice system \mathcal{S} consists of the following data:
(1) A cofinal sequence $\left\langle\lambda_{i} \mid i<\lambda\right\rangle$ in μ consisting of regular cardinals.
(2) A sequence $\left\langle D_{i} \mid i<\lambda\right\rangle$ such that each D_{i} is a uniform filter over λ_{i}.
(3) A sequence $\left\langle W_{i} \mid i<\lambda\right\rangle$ of pre-orders.
(4) Functions $g_{i}: W_{i} \rightarrow D_{i}^{+}$which are order-preserving and deciding.

The following is a slight variation of [6, Theorem 1.3]:
Theorem 2.4. Suppose that $\lambda=c f(\mu)<\mu, \mathcal{S}$ is a nice system and D is a uniform ultrafilter over λ. Suppose that $\theta \in\left(\mu, 2^{\mu}\right]$ is a regular cardinal such that:
(1) $C h(D) \leq \theta$.
(2) there is a Sullam $\left\langle f_{\beta} \mid \beta<\theta\right\rangle$ in $\left(\prod_{i<\lambda} W_{i}, D\right)$.

Then there is a uniform ultrafilter U over μ such that $C h(U) \leq \theta$.
Proof. The definition of U is as follows, for $X \subseteq \mu$:

$$
X \in U \Longleftrightarrow \exists \alpha<\theta\left\{i<\lambda \mid g_{i}\left(f_{\alpha}(i)\right) \subseteq_{D_{i}} X \cap \lambda_{i}\right\} \in D,
$$

where $\subseteq_{D_{i}}$ means \subseteq^{*} with respect to the filter D_{i}.
Claim 2.5. U is a uniform ultrafilter over μ.
Proof of claim. First, note that since $\operatorname{rng}\left(g_{i}\right)=D_{i}^{+}, g_{i}\left(f_{\alpha}(i)\right) \neq \emptyset\left(\bmod D_{i}\right)$, hence if $X=\emptyset$, then $\left\{i<\lambda \mid g_{i}\left(f_{\alpha}(i)\right) \subseteq_{D_{i}} X \cap \lambda_{i}\right\}=\emptyset$. Since D is a uniform filter, by the definition of $U, \emptyset \notin U$. A similar argument shows that $\mu \in U$. If $X_{1}, X_{2} \in U$, then there are $\alpha_{1}, \alpha_{2}<\theta$ such that

$$
E_{l}:=\left\{i<\lambda \mid g_{i}\left(f_{\alpha_{l}}(i)\right) \subseteq_{D_{i}} X_{l} \cap \lambda_{i}\right\} \in D, \quad \text { for } l=1,2 .
$$

Suppose without loss of generality that $\alpha_{1} \leq \alpha_{2}$. Then by the definition of Sullam, the set

$$
E_{3}:=\left\{i<\lambda \mid f_{\alpha_{1}}(i)<_{W_{i}} f_{\alpha_{2}}(i)\right\} \in D .
$$

Since all the g_{i} 's are order-preserving, for every $i \in E_{3}, g_{i}\left(f_{\alpha_{2}}(i)\right) \subseteq g_{i}\left(f_{\alpha_{1}}(i)\right)$. It follows that if $i \in E_{1} \cap E_{2} \cap E_{3} \in D$, we have that
(1) $g_{i}\left(f_{\alpha_{2}}(i)\right) \subseteq_{D_{i}} X_{2} \cap \lambda_{i}$ (since $i \in E_{2}$).
(2) $g_{i}\left(f_{\alpha_{2}}(i)\right) \subseteq g_{i}\left(f_{\alpha_{1}}(i)\right) \subseteq_{D_{i}} X_{1} \cap \lambda_{i}$ (Since $i \in E_{3}$ and $i \in E_{1}$, resp.).

It follows that $g_{i}\left(f_{\alpha_{2}}(i)\right) \subseteq_{D_{i}} X_{1} \cap X_{2} \cap \lambda_{i}$. By the definition of U, we conclude that $X_{1} \cap X_{2} \in U$. Showing that U is closed upward is straightforward. To see it is an ultrafilter, let $X \subseteq \mu$. For every $i<\lambda$, consider the set

$$
V_{i}=\left\{q \in W_{i} \mid\left(g_{i}(q) \subseteq X \cap \lambda_{i}\right) \vee\left(g_{i}(q) \subseteq \lambda_{i} \backslash X\right)\right\}
$$

then V_{i} is dense. Since g_{i} is order-preserving, V_{i} is also open. By the definition of Sullam, there is $\alpha<\theta$ such that

$$
F_{0}:=\left\{i<\lambda \mid f_{\alpha}(i) \in V_{i}\right\} \in D .
$$

This means that for each $i \in F_{0}, g_{i}\left(f_{\alpha}(i)\right) \subseteq X \cap \lambda_{i}$ or $g_{i}\left(f_{\alpha}(i)\right) \subseteq \lambda_{i} \backslash X$. Let us define a variable c_{i} which in the first case above $c_{i}=0$ and in the
second $c_{i}=1$. Since D is an ultrafilter, there is a unique $c^{*} \in\{0,1\}$ such that

$$
F_{1}:=\left\{i \in F_{0} \mid c_{i}=c^{*}\right\} \in D .
$$

Suppose without loss of generality that $c^{*}=0$. We have that for $i \in F_{1}$, $g_{i}\left(f_{\alpha}(i)\right) \subseteq X \cap \lambda_{i}$. This implies that $X \in U$. Finally to see that U is uniform, if $X \in U$, by definition, $I=\left\{i<\lambda \mid X \cap \lambda_{i} \in D_{i}^{+}\right\} \in D$. Since each D_{i} is uniform, for $i \in I,\left|X \cap \lambda_{i}\right|=\lambda_{i}$ and since D is uniform $|X|=\left|\bigcup_{i \in I} X \cap \lambda_{i}\right|=\sup _{i \in I} \lambda_{i}=\mu$. This completes the claim.

To finish the proof, let us construct a base of size at most θ for the ultrafilter U. Let
(1) $\left\langle d_{\alpha} \mid \alpha<\theta\right\rangle$ be a base for D (Assumption (1) of the theorem).
(2) $\left\langle f_{\beta} \mid \beta<\theta\right\rangle$ be the Sullam (Assumption (2) of the theorem).

Define for every $\alpha, \beta<\theta$, the set:

$$
B_{\alpha, \beta}=\bigcup_{i \in d_{\alpha}} g_{i}\left(f_{\beta}(i)\right) .
$$

Clearly, each $B_{\alpha, \beta}$ is in U. We now check that $\mathcal{B}=\left\{B_{\alpha, \beta} \mid \alpha, \beta<\theta\right\} \subseteq U$ is a base for U. Let $X \in U$, then by the definition, there is $\beta<\theta$ such that

$$
H_{0}:=\left\{i<\lambda \mid g_{i}\left(f_{\beta}(i)\right) \subseteq_{D_{i}} X \cap \lambda_{i}\right\} \in D .
$$

This implies that for each $i \in H_{0}$, there is a set $B_{i} \in D_{i}$ such that $g_{i}\left(f_{\beta}(i)\right) \cap$ $B_{i} \subseteq X \cap \lambda_{i}$. For every $i<\lambda$, define

$$
V_{i}:=\left\{q \in W_{i} \mid g_{i}(q) \subseteq B_{i} \vee g_{i}(q) \subseteq \lambda_{i} \backslash B_{i}\right\} .
$$

This is open dense, hence by the definition of Sullam, there is $\beta^{\prime}>\beta$ such that

$$
H_{1}=\left\{i<\lambda \mid f_{\beta^{\prime}}(i) \in V_{i}\right\} \in D .
$$

Note that if $i \in H_{1}$, then since $B_{i} \in D_{i}$, we have $g_{i}\left(f_{\beta^{\prime}}(i)\right) \subseteq B_{i}$. Since $\beta<\beta^{\prime}$, then by the definition of Sullam,

$$
H_{2}:=\left\{i<\lambda \mid f_{\beta}(i)<_{W_{i}} f_{\beta^{\prime}}(i)\right\} \in D .
$$

Find $\alpha<\theta$ such that $d_{\alpha} \subseteq^{*} H_{0} \cap H_{1} \cap H_{2}$, and let $\zeta<\lambda$ be such that $d_{\alpha} \backslash \zeta \subseteq H_{0} \cap H_{1} \cap H_{2}$. To see that $B_{\alpha, \beta^{\prime}} \backslash \lambda_{\zeta} \subseteq X$, note that if $\nu \in B_{\alpha, \beta^{\prime}} \backslash \lambda_{\zeta}$, then by the definition of $B_{\alpha, \beta^{\prime}}$, there is $i \in d_{\alpha} \backslash \zeta$ such that $\nu \in g_{i}\left(f_{\beta^{\prime}}(i)\right)$. Thus, $i \in H_{0} \cap H_{1} \cap H_{2}$ and therefore,

$$
g_{i}\left(f_{\beta^{\prime}}(i)\right) \subseteq g_{i}\left(f_{\beta}(i)\right) \cap B_{i} \subseteq X \cap \lambda_{i} .
$$

This concludes that $\nu \in X$.
2.1. A model where $\mathfrak{u}_{\aleph_{\omega_{1}}}<2^{\aleph_{\omega_{1}}}$. Now let us turn to force the assumptions of Theorem 2.4 for $\mu=\aleph_{\omega_{1}}$ with $\theta=\aleph_{\omega_{1}+1}$ with $2^{\aleph_{\omega_{1}}}>\aleph_{\omega_{1}+1}$. Our forcing will be the one from [14], which requires the following assumptions in the ground model V :

- GCH.
- a sequence $\left\langle\kappa_{i} \mid i<\omega_{1}\right\rangle$ of strong cardinals with limit κ.
- For each κ_{i}, E_{i} is a $\left(\kappa_{i}, \kappa^{++}\right)$-extender such that $j_{E_{i}}: V \rightarrow M_{E_{i}}$ is the extender ultrapower, $M_{E_{i}}$ computes cardinals correctly up to and including $\kappa^{++}, M_{E_{i}}^{\kappa_{i}} \subseteq M_{E_{i}}$.
- For each i, we have $s_{i}: \kappa_{i} \rightarrow \kappa_{i}$ the function representing κ in $j_{E_{i}}$, namely $j_{E_{i}}\left(s_{i}\right)\left(\kappa_{i}\right)=\kappa$. We can assume that $s_{i}(\nu)>\max \left\{\nu, \bar{\kappa}_{i}\right\}$ for every ν (see Notation 2.6).
- For each $i_{1}<i_{2}<\omega_{1}, j_{E_{i_{2}}}$, there is a function $t_{i_{2}}^{i_{1}}: \kappa_{i_{2}} \rightarrow V_{\kappa_{i_{2}}}$ such that $j_{E_{i_{2}}}\left(t_{i_{2}}^{i_{1}}\right)\left(\kappa_{i_{2}}\right)=E_{i_{1}}$ so that $E_{i_{1}} \in M_{E_{i_{2}}}$.
- \square_{κ} holds

The last requirement about the square will help us build a Sullam in Theorem 2.17. The assumption can be made possible by working in some canonical model for a Woodin cardinal.

Notation 2.6. for every $\beta \leq \omega_{1}$ denote by $\bar{\kappa}_{\beta}=\sup _{\alpha<\beta} \kappa_{\alpha}$ and $\bar{\kappa}_{0}=\omega$. In particular if β is successor then $\bar{\kappa}_{\beta}=\kappa_{\beta-1}$ and if β is limit then $\bar{\kappa}_{\beta}<\kappa_{\beta}$. In particular, $\kappa=\bar{\kappa}_{\omega_{1}}$

For the convenience of the reader, we include here Merimovich notations for which we will use:

- For $i<\omega_{1}$, an $\underline{i \text {-domain }}$ is a set $d \in\left[\kappa^{++}\right]^{\kappa_{i}}$ such that $\kappa_{i}+1 \subseteq d$ (a set which can be the domain of the Cohen part of a condition in the extender-based forcing).
- Define $m c_{i}(d)=\left(j_{E_{i}} \upharpoonright d\right)^{-1}=\left\{\left\langle j_{E_{i}}(x), x\right\rangle \mid x \in d\right\}$. (This is the generator of a measure used by Merimovich in his version of Extenderbased forcings).
- Denote the measure generated by $m c_{i}(d)$, by $\underline{E_{i}(d)}$, namely $X \in$ $E_{i}(d) \Longleftrightarrow m c_{i}(d) \in j_{E_{i}}(X)$.
A typical element in a measure one set of $E_{i}(d)$ is a sequence which provide a "layer" of points for the continuation of the Prikry sequences appearing in the domain of a given condition. The following definition summarizes the properties we need from such sequences:

Definition 2.7. An (i, d)-object is a function μ such that:
(1) $\kappa_{i} \in \operatorname{dom}(\mu) \subseteq d$ and $\operatorname{rng}(\mu) \subseteq s_{i}\left(\mu\left(\kappa_{i}\right)\right)^{++} \subseteq \kappa_{i}$.
$\left(\right.$ Since $\operatorname{dom}\left(m c_{i}(d)\right)=j_{E_{i}}^{\prime \prime} d$, then $j_{E_{i}}\left(\kappa_{i}\right) \in \operatorname{dom}\left(m c_{i}(d)\right) \subseteq j_{E_{i}}(d)$. Also $\left.\operatorname{rng}\left(m c_{i}(d)\right)=d \subseteq \kappa^{++} \subseteq=j_{E_{i}}\left(s_{i}\right)\left(\kappa_{i}\right)\right)$.
(2) $|\operatorname{dom}(\mu)|=\mu\left(\kappa_{i}\right)<\kappa_{i}$ and $\mu\left(\kappa_{i}\right)$ is inaccessible.
(since $\left.\left|\operatorname{dom}\left(m c_{i}(d)\right)\right|=|d|=\kappa_{i}<j_{E_{i}}\left(\kappa_{i}\right)\right)$.
(3) $\operatorname{dom}(\mu) \cap \kappa_{i}=\mu\left(\kappa_{i}\right)$ and $\mu \upharpoonright \mu\left(\kappa_{i}\right)=i d$.
$\left(\right.$ Since $\kappa_{i} \subseteq d$, then $\operatorname{dom}\left(m c_{i}(d)\right) \cap j_{E_{i}}\left(\kappa_{i}\right)=j_{E_{i}}^{\prime \prime} d \cap j_{E_{i}}\left(\kappa_{i}\right)=\kappa_{i}$. For the second part, note that $\alpha<\kappa_{i}, j_{E_{i}}(\alpha)=\alpha$ and therefore $m c_{i}(d)(\alpha)=\alpha$.)
(4) μ is order preserving.
(Since $j_{E_{i}}$ is order-preserving.)
The set $O B_{i}(d)$ is the set of (i, d)-objects, and clearly $O B_{i}(d) \in E_{i}(d)$.
We can omit the ' i ' from the " (i, d)-object" and form $O B_{i}(d)$ since i is uniquely determined by d (recall that $|d|=\kappa_{i}$).

Definition 2.8. If $d \subseteq d^{\prime}$ are i-domains let $\pi_{d^{\prime}, d}: O B\left(d^{\prime}\right) \rightarrow O B(d)$ be the restriction function $\pi_{d^{\prime}, d}(\mu)=\mu \upharpoonright d$ (which is equal to $\left.\mu \upharpoonright \operatorname{dom}(\mu) \cap d\right)$.

Clearly, the generators and the measures are projected using the restriction map, namely $j_{E_{i}}\left(\pi_{d^{\prime}, d}\right)\left(m c_{i}\left(d^{\prime}\right)\right)=m c_{i}(d)$ and $\left(\pi_{d^{\prime}, d}\right)_{*}\left(E_{i}\left(d^{\prime}\right)\right)=E_{i}(d)$ where $\left(\pi_{d^{\prime}, d}\right)_{*}$ is the natural map induced by $\pi_{d^{\prime}, d}$.

Here are two relevant combinatorial lemmas regarding such measures:
Proposition 2.9. Let $0 \leq i_{1}<i_{2}<\ldots<i_{n}<\omega_{1}$ and $F: \prod_{k=0}^{n} A_{i_{k}} \rightarrow X$ is any function such that $d_{i_{k}}$ is i_{k}-domain, $A_{i_{k}} \in E_{i_{k}}\left(d_{i_{k}}\right)$ and $|X|<\kappa_{i_{1}}$. Then there is $B_{i_{k}} \subseteq A_{i_{k}}$ such that $B_{i_{k}} \in E_{i_{k}}\left(d_{i_{k}}\right)$ such that $F \upharpoonright \prod_{k=0}^{n} B_{i_{k}}$ is constant.

Proposition 2.10. (The bound for the number of objects with the same projection to the normal measure) For each $i<\omega_{1}$ and an i-domain d, there is a set $A_{i}(d)$ such that $A_{i}(d) \in E_{i}(d)$, and for each $\nu<\kappa_{i}$, the size of $\left\{\mu \in A_{i}(d) \mid \mu\left(\kappa_{i}\right)=\nu\right\}$ is at most $s_{i}(\nu)^{++}$.

We keep the notation of $A_{i}(d)$. Finally, we denote the normal measure below E_{i} by $E_{i}\left(\kappa_{i}\right)$ which is the set of all $X \subseteq \kappa_{i}$ such that $\kappa_{i} \in j_{E_{i}}(X)$. If $A \in E_{i}(d)$, the projection to normal is denoted by $\underline{A\left(\kappa_{i}\right)}$ and is define as $A\left(\kappa_{i}\right)=\left\{\mu\left(\kappa_{i}\right) \mid \mu \in A\right\} \in E_{i}\left(\kappa_{i}\right)$.

Definition 2.11. A condition in $\mathbb{P}_{\vec{E}}$ is a sequence $p=\left\langle p_{i} \mid i<\omega_{1}\right\rangle$ such that there is a finite set $\operatorname{Supp}(p) \in\left[\omega_{1}\right]^{<\omega}$, and we have that:

$$
p_{i}= \begin{cases}\left\langle f_{i}, h_{i}^{0}, h_{i}^{1}, h_{i}^{2}\right\rangle & i \in \operatorname{Supp}(p) \\ \left\langle f_{i}, A_{i}, H_{i}^{0}, H_{i}^{1}, H_{i}^{2}\right\rangle & i \notin \operatorname{Supp}(p)\end{cases}
$$

Such that for every every $i_{1}<i_{2}<\omega_{1}$, $\operatorname{dom}\left(f_{i_{1}}\right) \subseteq \operatorname{dom}\left(f_{i_{2}}\right)$. Denote $\operatorname{Supp}(p)=\left\{i_{1}<i_{2}<\ldots<i_{r}\right\}$ and $i_{0}=0$, then for every $i<\omega_{1}$:

$$
\bar{\kappa}_{i}<\bar{\kappa}_{i}^{+2}<f_{i}\left(\kappa_{i}\right)<s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)<s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+}<s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{++}<\kappa_{i},
$$

$f_{i}\left(\kappa_{i}\right)$ is inaccessible, and we require that:
(1) If there is $k<r$ such that $i \in\left[i_{k}, i_{k+1}\right) f_{i}$ is a partial function from $s_{i_{k+1}}\left(f_{i_{k+1}}\left(\kappa_{i_{k+1}}\right)\right)^{++}$to κ_{i} such that $\kappa_{i}+1 \subseteq \operatorname{dom}\left(f_{i}\right)$ and $\left|f_{i}\right|=\kappa_{i}$.
(2) If $i \in\left[i_{r}, \omega_{1}\right)$, then f_{i} is a partial function from κ^{++}to κ_{i} such that $\operatorname{dom}\left(f_{i}\right)$ is an i-domain. In this case, abusively write the forcing in which f_{i} lives as $A d d\left(\kappa_{i}^{+}, \kappa^{++}\right)$.
(3) for $i \in \operatorname{Supp}(p), h_{i}^{0} \in \operatorname{Col}\left(\bar{\kappa}_{i}^{+},<f_{i}\left(\kappa_{i}\right)\right), h_{i}^{1} \in \operatorname{Col}\left(f_{i}\left(\kappa_{i}\right), s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+}\right)$, $h_{i}^{2} \in \operatorname{Col}\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+3},<\kappa_{i}\right)$.
(4) For $i \notin \operatorname{Supp}(p)$:
(a) $A_{i} \in E_{i}\left(\operatorname{dom}\left(f_{i}\right)\right)$.
(b) $\operatorname{dom}\left(H_{i}^{0}\right)=\operatorname{dom}\left(H_{i}^{1}\right)=A_{i}$ and $\operatorname{dom}\left(H_{i}^{2}\right)=A_{i}\left(\kappa_{i}\right)$.
(c) $H_{i}^{0}(\mu) \in \operatorname{Col}\left(\bar{\kappa}_{i}^{+},<\mu\left(\kappa_{i}\right)\right), H_{i}^{1}(\mu) \in \operatorname{Col}\left(\mu\left(\kappa_{i}\right), s_{i}\left(\mu\left(\kappa_{i}\right)\right)^{+}\right)$and $H_{i}^{2}\left(\mu\left(\kappa_{i}\right)\right) \in \operatorname{Col}\left(s_{i}\left(\mu\left(\kappa_{i}\right)\right)^{+3},<\kappa_{i}\right)$.
If p is a condition, we usually represent each component of p by putting the superscript p to that component. For example, f_{i} in p is denoted by f_{i}^{p}. We also write $\operatorname{dom}\left(f_{i}^{p}\right)$ as d_{i}^{p}.

Definition 2.12. The direct order is defined by $p \leq^{*} q$ if $\operatorname{Supp}(p)=$ $\operatorname{Supp}(q)$, for every $i, f_{i}^{p} \subseteq f_{i}^{q}$ and
(1) if $i \in \operatorname{Supp}(p)$, then for $h_{i}^{r, p} \leq h_{i}^{r, q}$ for $r=0,1,2$.
(2) if $i \notin \operatorname{Supp}(p), \pi_{\operatorname{dom}\left(f_{i}^{q}\right), \operatorname{dom}\left(f_{i}^{p}\right)}\left[A_{i}^{q}\right] \subseteq A_{i}^{p} . H_{i}^{r, p}\left(\pi_{\operatorname{dom}\left(f_{i}^{q}\right), \operatorname{dom}\left(f_{i}^{p}\right)}(\mu)\right) \leq$ $H_{i}^{r, q}(\mu)$ for every μ and $r=0,1$, and $H_{i}^{2, p}(\gamma) \leq H_{i}^{r, q}(\gamma)$ for every γ.

Remark 2.13. The collection of μ which is addable to p is of measure-one.
Definition 2.14. Let $i \notin \operatorname{Supp}(p) . \mu \in A_{i}^{p}$ is addable to p if:
(1) $\bar{\kappa}_{i}<\mu\left(\kappa_{i}\right)$ is inaccessible.
(2) $\cup_{\alpha<i} \operatorname{dom}\left(f_{\alpha}\right) \subseteq \operatorname{dom}(\mu)$ and $\mu \upharpoonright \bar{\kappa}_{i}=i d$.
(3) For every $\beta \in(\max (\operatorname{Supp}(p) \cap \alpha), \alpha),\left\{\nu \circ \mu^{-1} \mid \nu \in A_{\beta}^{p}\right\} \in t_{\alpha}^{\beta}\left(\mu\left(\kappa_{\alpha}\right)\right)\left(\mu\left[\operatorname{dom}\left(f_{\beta}\right)\right]\right)$.

Definition 2.15. Let $i \notin \operatorname{Supp}(p), i_{*}=\max (\operatorname{Supp}(p) \cap i)$ where $\max (\emptyset)=$ -1 , and $\mu \in A_{i}^{p}$, define $p+\mu$ as the condition q such that $\operatorname{Supp}(q)=$ $\operatorname{Supp}(p) \cup\{i\}$, and
(1) For $r \in\left[0, i_{*}\right) \cup\left(i, \omega_{1}\right), p_{r}=q_{r}$.
(2) For $r=i, f_{i}^{q}=f_{i}^{p} \oplus \mu, h_{i}^{0, q}=H_{i}^{0, p}(\mu), h_{i}^{1, q}=H_{i}^{1, p}(\mu)$ and $h_{i}^{2, q}=$ $H_{i}^{2, p}\left(\mu\left(\kappa_{i}\right)\right)$.
(3) For $r \in\left[i_{*}, i\right), j \geq 0, f_{r}^{q}=f_{r}^{p} \circ \mu^{-1}$ and if $r>i_{*}$, then $A_{r}^{q}=A_{r}^{p} \circ \mu^{-1}$, $H_{r}^{j, q}(\nu)=H_{r}^{j, q}(\nu \circ \mu)$ for $j=0,1$, and $H_{j}^{2, q}=H_{j}^{2, p}$.
Define $p+\left\langle\mu_{1}, \cdots, \mu_{n}\right\rangle$ recursively by $p+\left(\left\langle\mu_{1}, \cdots, \mu_{n-1}\right\rangle\right)+\mu_{n}$. Define an ordering in $\mathbb{P}_{\vec{E}}$ by $p \leq q$ if $p+\vec{\mu} \leq^{*} q$ for some $\vec{\mu}$ ($\vec{\mu}$ could be empty). Sometimes, we interact an object with the part of the condition that appears before the occurrence of the object, for example, we have a part $p \in \mathbb{P}_{\vec{E}}$, $d \supseteq d_{i}^{p}$, and $\mu \in O B_{i}(d)$, then $p \upharpoonright i$ is considered as an element in $\mathbb{P}_{\vec{E} \mid i}$, and if $t \in \mathbb{P}_{\vec{E} \mid i}$, we denote t_{μ} a tuple obtained by "squishing t by μ, namely we operate as in Definition 2.15 (1) for $r<i_{*}$ and (3). Note that $t_{\mu} \in$ $\mathbb{P}_{\left\langle t_{i}^{\beta}\left(\mu\left(\kappa_{i}\right)\right) \mid \beta<i\right\rangle}$.
Proposition 2.16 (Properties). (1) $\mathbb{P}_{\vec{E}}$ is $\kappa^{++}{ }_{-c}$ c.c.
(2) For every p, and for every $i \in \operatorname{Supp}(p)$ the forcing above p can be factored to a product

$$
\mathbb{P}_{<i} \times \operatorname{Col}\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)^{+3},<\kappa_{i}\right) \times \mathbb{P}_{>i}\right.
$$

Where $\left(\mathbb{P}_{>i}, \leq^{*}\right)$ is a κ_{i}^{+}-closed forcing and $\left|\mathbb{P}_{<i}\right| \leq s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+2}<\kappa_{\alpha}$
(3) $\mathbb{P}_{\vec{E}}$ has the Prikry property and the strong Prikry property (the strong Prikry property says that for every p and a dense open set D, there is $p^{*} \geq^{*} p$ and $a \in\left[\omega_{1}\right]^{<\omega}$ such that for every $\vec{\mu} \in \prod_{i \in a} A_{i}^{p^{*}}, p^{*}+\vec{\mu} \in$ D).
(4) Cardinal's structure: In the extension, the κ_{i} 's are preserved and between κ_{i} and κ_{i+1} we preserve only
$\kappa_{i}^{+}<f_{i+1}\left(\kappa_{i+1}\right)<s_{i+1}\left(f_{i+1}\left(\kappa_{i+1}\right)\right)^{++}<s_{i+1}\left(f_{i+1}\left(\kappa_{i+1}\right)\right)^{+++}$
In particular every $i \leq \omega_{1}, \bar{\kappa}_{i}$ is preserved. κ^{+}is preserved by the strong Prikry property, and above κ^{++}we use the chain condition.
(5) If $\alpha<\omega_{1}$ is limit, in the extension, $\bar{\kappa}_{\alpha}=\aleph_{\alpha}, 2^{\aleph_{\alpha}}=\aleph_{\alpha+3}, \kappa$ becomes $\aleph_{\omega_{1}}$ and $2^{\aleph_{\omega_{1}}}=\aleph_{\omega_{1}+2}$. (The mismatch for the cardinals of the powersets of singular cardinals is not a typo. In Section 3 we will elaborate a slight modification so that in the extension, the cardinal behavior on singular cardinals will align uniformly).
(6) $\square_{\aleph_{\omega_{1}}}$ holds. (This is simply because we assume \square_{κ} in the ground model, κ and κ^{+}are preserved in the extension, and κ becomes $\aleph_{\omega_{1}}$).
Theorem 2.17. After forcing with $\mathbb{P}_{\vec{E}}$, there is a nice system satisfying the assumption of Theorem 2.4 with $\theta=\aleph_{\omega_{1}+1}$.
Proof. The proof is divided into two stages. The first stage is to build a nice system. The second stage is to find a uniform ultrafilter of small base and a Sullam.

Stage 1: We fix any uniform ultrafilter D over ω_{1} in the extension. Let us use the sequence $\lambda_{i}=\kappa_{i}$ which is regular in the extension. Note that κ_{i} was measurable in V, we fix a normal measure D_{i}^{\prime} on κ_{i} in V. Since the upper forcing $\mathbb{P}_{>i}$ does not add subsets to κ_{i}, κ_{i} remains measurable after forcing with $\mathbb{P}_{>i}$ with the measure D_{i}^{\prime}. Also, by the small cardinality of $\mathbb{P}_{<i}$, we can lift any ultrapower embedding using a normal ultrafilter over κ_{i} from $V^{\mathbb{P}>i}$ to $V^{\mathbb{P}_{>i} \times \mathbb{P}_{<i}}$. Hence κ_{i} remains measurable after forcing with $\mathbb{P}_{>i} \times \mathbb{P}_{<i}$. The embedding generates a normal measure extending D_{i}^{\prime}, and we still call the measure in the extension D_{i}^{\prime}. Clearly, the measurability fo κ_{i} is destroyed by forcing $\operatorname{Col}\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+3},<\kappa_{i}\right)$. However, if $D_{i}^{\prime} \in V^{\mathbb{P}>i \times \mathbb{P}_{<i}}=: V_{1}$ is a normal ultrafilter over κ_{i}, we can follow the construction in [4, Section 17.1]: Let $j_{D_{i}^{\prime}}: V_{1} \rightarrow M_{1}$ be the usual ultrapower embedding. Then, $\left.j_{D_{i}^{\prime}}\left(\operatorname{Col}\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)\right)^{+3},<\kappa_{i}\right)\right)$ is forcing equivalent to $\left.\operatorname{Col}\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)\right)^{+3},<\kappa_{i}\right) \times \mathbb{Q}$, where \mathbb{Q} adds a collapsing function for every $\alpha \in\left[\kappa_{i}, j_{D_{i}^{\prime}}\left(\kappa_{i}\right)\right)$ to have cardinality $\left.s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)\right)^{+3}$. We call the forcing $\left.\operatorname{Col}\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)\right)^{+3}, I_{i}\right)$ where $I_{i}=\left[\kappa_{i}, j_{D_{i}^{\prime}}\left(\kappa_{i}\right)\right)$. Over $V_{1}[G]$ (which is the generic extension by $\mathbb{P}_{\vec{E}}$), let H be \mathbb{Q}-generic over $V_{1}[G]$. and in the model
$V_{1}[G][H]$ we can lift $j_{D_{i}^{\prime}} \subseteq j^{*}: V_{1}[G] \rightarrow M_{1}[G * H]$. Now in $V_{1}[G]$, we define an extension of D_{i}^{\prime} :

$$
D_{i}:=\left\{X \subseteq \kappa_{i} \mid 0_{\mathbb{Q}} \vdash_{\mathbb{Q}} \kappa_{i} \in j^{*}(X)\right\}
$$

Clearly, D_{i} is uniform. Moreover, in $V_{1}[G]$ the forcing $\left(D_{i}^{+}, \supseteq\right)$ is isomorphic to $\operatorname{ro}(\mathbb{Q})^{5}$. In particular, since \mathbb{Q} is a dense subset of $\operatorname{ro}(\mathbb{Q})$, there is a dense embedding $g_{i}: \mathbb{Q} \rightarrow D_{i}^{+}$. Let $W_{i}=\mathbb{Q}$, then $g_{i}: W_{i} \rightarrow D_{i}^{+}$is order preserving. To see that it is deciding, let $A \subseteq \kappa_{i}$ and let $q \in \mathbb{Q}$. Then either $A \cap g_{i}(q) \in D_{i}^{+}$or $\left(\kappa_{i} \backslash A\right) \cap g_{i}(q) \in D_{i}^{+}$. Suppose without loss of generality that $A \cap \pi(q) \in D_{i}^{+}$. Then by density of \mathbb{Q}, there is $q^{\prime} \geq q$ such that $g_{i}\left(q^{\prime}\right) \subseteq A \cap g_{i}(q) \subseteq A$. So far we have proven that $\left\langle\kappa_{i} \mid i<\omega_{1}\right\rangle$, $\left\langle W_{i} \mid i<\omega_{1}\right\rangle,\left\langle D_{i} \mid i<\omega_{1}\right\rangle$ and $\left\langle g_{i} \mid i<\omega_{1}\right\rangle$ forms a nice system. Note that \mathbb{Q} is the collapse forcing in the sense of V, and \dot{W}_{i} is decided from any p with $i \in \operatorname{Supp}(p)$, i.e. $\dot{W}_{i}=\operatorname{Col}\left(s_{i}\left(\dot{f}_{i}\left(\kappa_{i}\right)\right)^{+3}, I_{i}\right)$.

Stage 2: We now prove requirements (1) - (2) of Theorem 2.4. (1) is easy, since $\aleph_{\omega_{1}}$ is singular strong limit, and so $2^{\aleph_{1}}<\aleph_{\omega_{1}}$, then $C h(D) \leq$ $|D|<\aleph_{\omega_{1}+1}$. For (2) we need the following claim:

Claim 2.18. For every $p \in \mathbb{P}$ and every sequence $\left\langle\dot{U}_{i} \mid i<\omega_{1}\right\rangle$ such that $p \Vdash \dot{U}_{i} \subseteq \dot{W}_{i}$ and \dot{U}_{i} is open dense, there is $p \leq^{*} p^{*}$ and a function $F: V_{\kappa} \rightarrow$ V_{κ} in V such that for every generic G of \mathbb{P}, there is a translation $F_{i}^{G} \in V[G]$ such that $F_{i}^{G} \subseteq \dot{W}_{i}[G]$ is open dense and is a subset of $\dot{U}_{i}[G]$.

Proof. Fix p and \dot{U}_{i} for $i<\omega_{1}$. Assume for simplicitiy that p is pure. Build a \leq^{*}-increasing sequence $\left\langle p^{i} \mid i<\omega_{1}\right\rangle$ such that for each $i, p^{i+1} \upharpoonright(i+1)=$ $p^{i} \upharpoonright(i+1)$, and at each limit α, we take p^{α} as a \leq^{*}-least upper bound of $\left\langle p^{\beta}\right|$ $\beta<\alpha\rangle$. Let $p^{0}=p$. It remains to elaborate the construction at the successor stages. Let $i<\omega_{1}$ and p^{i} is constructed. Write $p_{i+1}^{i}=\left\langle f, A, H^{0}, H^{1}, H^{2}\right\rangle$. Let

$$
\mathbb{R}^{*}=\left\{(g, \vec{r}) \in \operatorname{Add}\left(\kappa_{i+1}^{+}, \kappa^{++}\right) \times \mathbb{P}_{\vec{E} \backslash(i+2)}, \leq^{*}\right) \mid
$$

$\operatorname{dom}(g)$ is a subset of the domains in the Cohen part of $\vec{r}\}$.
Let $N \prec H_{\rho}$ where ρ is a sufficiently large regular cardinal, $p^{i}, \dot{W}_{i}, \dot{U}_{i}, \mathbb{P} \in N$, $\kappa_{i+1}+1 \subseteq N$, and ${ }^{<\kappa_{i+1}} N \subseteq N$. Build an \mathbb{R}^{*}-increasing sequence $\left\{\left(f_{\gamma}, \vec{r}_{\gamma}\right) \mid\right.$ $\left.\gamma<\kappa_{i+1}\right\}$ above $\left(f, p^{i} \backslash(i+2)\right)$ such that every initial segment in in N, and for every \mathbb{R}^{*}-dense open set $D \in N$, there is γ such that $\left(f_{\gamma}, \vec{r}_{\gamma}\right) \in D$. Let $f^{*}=\cup_{\gamma} f_{\gamma}$ and \vec{r} be the \leq^{*}-least upper bound of $\left\langle\vec{r}_{\gamma} \mid \gamma<\kappa_{i+1}\right\rangle$. Then $d^{*}:=\operatorname{dom}\left(f^{*}\right)=N \cap \kappa^{++}$. Let $A^{*} \in E_{i}\left(d^{*}\right), A^{*} \subseteq A_{i}\left(d^{*}\right)$, and A^{*} projects down to a subset of A. Then $A^{*} \subseteq N$. Fix $\gamma<\kappa_{i+1}$. In N, fix $\gamma<\kappa_{i+1}$. for each $\mu \in A^{*}$ with $\mu\left(\kappa_{i+1}\right)=\gamma$, consider $q^{\mu}=\left\langle\left(p^{i} \upharpoonright(i+1)\right)_{\mu},\left(H^{0}\right)(\mu \upharpoonright\right.$ $\left.\left.d_{i}^{p^{i}}\right),\left(H^{1}\right)\left(\mu \upharpoonright d_{i}^{p^{i}}\right)\right\rangle$. Define $D_{\mu, x}=\left\{(h, g, \vec{r}) \in \operatorname{Col}\left(s_{i}(\gamma)^{+3},<\kappa_{i}\right) \times \mathbb{R}^{*} \mid\right.$ $\left\{\left(t, h^{0}, h^{1}\right) \geq q^{\mu} \mid\right.$ Either
(1) $t\left\ulcorner\left\langle g \oplus \mu, h^{0}, h^{1}, h\right\rangle \subset \vec{r} \Vdash x \notin \dot{W}_{i}\right.$,

[^4](2) or $t \subset\left\langle g \oplus \mu, h^{0}, h^{1}, h\right\rangle \smile \vec{r} \Vdash x \in \dot{W}_{i}$ and the condition decides some $\left.y \geq x, y \in \dot{U}_{i}\right\}$,
is open dense. Let $D_{\gamma}^{\prime}=\left\{(g, \vec{r}) \in \mathbb{R}^{*} \mid \exists h(h, g, \vec{r})\right.$ satisfies the strong Prikry property for every $D_{\mu, x}$ with $\left.\mu\left(\kappa_{i+1}\right)=\gamma\right\}$. Then $D_{\mu, x}$ is open dense and is in N. The closure of the forcing for $D_{\mu, x}$ is $s_{i+1}(\gamma)^{+3}$. Since the number of such μ is $s_{i+1}(\gamma)^{++}$and a number of such x is κ_{i}^{+}, we have that D_{γ}^{\prime} is an open dense set in N. By genericity, $\left(f^{*}, \vec{r}^{*}\right) \in D_{\gamma}^{\prime}$ with a witness $h=:\left(H^{2}\right)^{*}(\gamma)$. Let $p^{i+1}=p^{i} \upharpoonright(i+1) \smile\left\langle f^{*}, A^{*},\left(H^{0}\right)^{\prime},\left(H^{1}\right)^{\prime},\left(H^{2}\right)^{*}\right\rangle \vec{r}^{*}$ where for $l=0,1$, $\left(H^{l}\right)^{\prime}$ is the natural map induced from H^{l}. For the rest of the proof, we denote $d_{i+1}:=\operatorname{dom}\left(f^{*}\right)$ as above.

Take p^{*} as the \leq^{*}-least upper bound for p^{i}. For each (μ, x) with $\mu \in$ $A_{i+1}^{p^{*}}$, by the property of $D_{\mu \backslash d_{i+1}, x}$ and the property of p^{i+1}, we have that for each $\left(\mu \upharpoonright d_{i+1}, x\right)$, there is a set $a_{\mu, x}:=a_{\mu \backslash d_{i+1}, x} \in\left[\omega_{1}\right]<\omega$ witnessing the strong Prikry property for p^{*}, namely for every $\vec{\tau} \in \prod_{\beta \in a_{\mu, x}} A_{\beta}^{p^{*}}$, $\left(\left(H^{2}\right)^{*}\left(\mu\left(\kappa_{i+1}\right)\right), f_{i+1}^{p^{*}},\left(p^{*}+\langle\mu, \vec{\tau}\rangle\right) \backslash(i+2)\right\rangle \in D_{\mu\left\lceil d_{i+1}, x\right.}$. For each $\vec{\tau} \in \prod_{i \in a_{\mu, x}}$ maximal, fix a maximal antichain $B_{\mu, x, \vec{\tau}} \subseteq \mathbb{P}_{\left\langle t_{i+1}^{\beta}\left(\mu\left(\kappa_{i+1}\right)|\beta<i+1\rangle\right.\right.} \times \operatorname{Col}\left(\kappa_{i}^{+},<\right.$ $\left.\mu\left(\kappa_{i+1}\right)\right) \times \operatorname{Col}\left(\mu\left(\kappa_{i+1}\right), s_{i+1}\left(\mu\left(\kappa_{i+1}\right)\right)^{+}\right)$such that every element in $B_{\mu, x, \vec{\tau}}$ either satisfies (1) or (2). Define $F: V_{\kappa} \rightarrow V_{\kappa}$ as follows: for each $\mu, x, \vec{\tau}$ and $r \in B_{\mu, x, \vec{\tau}}$, define $F(\mu, x, \vec{\tau}, r)=y$ if (2) holds with the decision y. Otherwise, the value is 0 . For other elements in $\operatorname{dom}(F)$. assign them as 0 .

We now interpret $F[G]$ when G is $\mathbb{P}_{\vec{E}}$-generic containing p^{*}. For each $x \in W_{i}:=\dot{W}_{i}[G]$, find a condition $s \in G$ above $p^{*}+\langle\mu, \vec{\tau}\rangle$ with $(s \upharpoonright$ $\left.(i+1),\left(h_{i+1}^{0}\right)^{s},\left(h_{i+1}^{1}\right)^{s}\right) \geq r$ for a unique $r \in B_{\mu, x, \vec{r}}$. Let $y_{x}=F(\mu, x, \vec{\tau}, r)$. Define $F_{i}^{G}=\left\{y \mid y \geq y_{x}\right.$ for some $\left.x \in W_{i}\right\}$. We see that F_{i}^{G} is open dense and is a subset of $\dot{U}_{i}[G]$.

From the claim we get that if $\left\langle U_{i} \mid i<\omega_{1}\right\rangle \in V[G]$ is a list of dense open subsets of $\left\langle W_{i} \mid i<\omega_{1}\right\rangle$, then there is a function $F: V_{\kappa} \rightarrow V_{\kappa} \in V$ such that for every $i<\omega_{1}, F_{i}^{G} \subseteq U_{i}$ and F_{i}^{G} is dense open. Since we have $G C H$ in V, we can enumerate $\left\langle g_{\alpha} \mid \alpha<\kappa^{+}\right\rangle$all the functions $F: V_{\kappa} \rightarrow V_{\kappa}$ and in $V[G]$, denote $U_{\alpha, i}=\left(g_{\alpha}\right)_{i}^{G}$ and $\vec{U}_{\alpha}=\left\langle U_{\alpha, i} \mid i<\omega_{1}\right\rangle$. Then the sequence $\left\langle\vec{U}_{\alpha} \mid \alpha<\kappa^{+}\right\rangle$has the following properties:
(1) Each \vec{U}_{α} is a sequence of dense open subsets $U_{\alpha, i} \subseteq W_{i}$.
(2) For every sequence $\left\langle V_{i} \mid i<\omega_{1}\right\rangle$ of dense open subsets of W_{i}, there is some $\alpha<\kappa^{+}$such that for every $i<\omega_{1}, U_{\alpha, i} \subseteq V_{i}$.
Let us now define a Sullam $\left\langle f_{\alpha} \mid \alpha<\aleph_{\omega_{1}+1}\right\rangle$ modulo the filter of co-bounded subsets of ω_{1} in the generic extension. Fix a $\square_{\aleph_{\omega_{1}}}$-sequence $\left\langle C_{\alpha}\right| \alpha \in$ $\left.\lim \left(\aleph_{\omega_{1}+1}\right)\right\rangle$ such that each C_{α} has order-type below $\aleph_{\omega_{1}}$. Our induction hypothesis is that for each limit α, if i^{*} is the least such that the closure of $W_{i^{*}}$ is strictly greater than $\operatorname{ot}\left(\lim \left(C_{\alpha}\right)\right)$, the for $i \geq i^{*},\left\langle f_{\beta}(i)\right| \beta \in$ $\left.\lim \left(C_{\alpha}\right) \cup\{\alpha\}\right\rangle$ is strictly increasing. f_{0} is random. Fix f_{α}, let $f_{\alpha+1}$ be such that for all $i, f_{\alpha}(i)<_{W_{i}} f_{\alpha+1}(i)$ and $f_{\alpha+1}(i) \in U_{\alpha, i}$. Now, assume α is limit.

If $o t\left(C_{\alpha}\right)=\omega$, then let $f_{\alpha}(i)=\sup _{\beta \in C_{\alpha}} f_{\beta}(i)$. A straightforward argument shows that f_{α} is a \leq^{*}-upper bound of $\left\langle f_{\beta} \mid \beta<\alpha\right\rangle$. Assume that ot $\left(C_{\alpha}\right)>\omega$. Let i^{*} be the least such that the closure of $W_{i^{*}}$ is greater than $o t\left(\lim \left(C_{\alpha}\right)\right)$. We divide further into two subcases. If $\lim \left(C_{\alpha}\right)$ is bounded in α, then $\beta^{*}=$ $\max \left(\lim \left(C_{\alpha}\right)\right)$ exists. This only happens if $\operatorname{cf}\left(o t\left(C_{\alpha}\right)\right)=\omega$ and $C_{\alpha} \backslash\left(\beta^{*}+1\right)$ has order-type ω. For this case, let $i^{* *} \geq i^{*}$ be such that for $i \geq i^{* *}$, $\left\langle f_{\beta}(i)\right\rangle \smile\left\langle f_{\gamma(i)} \mid i \in C_{\alpha} \backslash(\beta+1)\right\rangle$ is strictly increasing. Define $f_{\alpha}(i)$ such that for $i \in\left[i^{*}, i^{* *}\right), f_{\alpha}(i)=f_{\beta}(i)$, and for $i \geq i^{* *}, f_{\alpha}(i)=\sup _{\gamma \in C_{\alpha} \backslash(\beta+1)} f_{\alpha}(i)$. Then f_{α} is a \leq^{*} upper bound of $\left\langle f_{\gamma} \mid \gamma<\alpha\right\rangle$ and f_{α} satisfies the induction hypothesis. We now consider the second subcase, which is the case where $\lim \left(C_{\alpha}\right)$ is unbounded in α. In this case, for $i \geq i^{*},\left\langle f_{\beta}(i) \mid \beta \in \lim \left(C_{\alpha}\right)\right\rangle$ is increasing. Let f_{α} be such that for $i \geq i^{*}, f_{\alpha}(i)=\sup _{\beta \in \lim \left(C_{\alpha}\right)} f_{\beta}(i)$. This completes the proof of Theorem 2.17.

From Theorem 2.4 and Theorem 2.17, we conclude that
Theorem 2.19. Assume $G C H,\left\langle\kappa_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ is an increasing sequence of cardinals such that by letting $\kappa=\sup _{\alpha<\omega_{1}} \kappa_{\alpha}$,
(1) for each α, κ_{α} carries a $\left(\kappa_{\alpha}, \kappa^{++}\right)$-extender E_{α}.
(2) let $j_{\alpha}: V \rightarrow \operatorname{Ult}\left(V, E_{\alpha}\right)$, then $\operatorname{Ult}\left(V, E_{\alpha}\right)$ computes cardinals correctly up to and including κ^{++}.
(3) if $\beta<\alpha$, there is t_{α}^{β} such that $j_{\alpha}\left(t_{\alpha}^{\beta}\right)\left(\kappa_{\alpha}\right)=E_{\beta}$.

Then, there is a forcing such that in a generic extension, $\mathfrak{u}_{\aleph_{\omega_{1}}}<2^{\aleph_{\omega_{1}}}=$ $\aleph_{\omega_{1}+2}$.

Remark 2.20. With the same argument, in the forcing extension from Theorem 2.19, for any limit ordinal $\alpha<\omega_{1}$ we also get $\mathfrak{u}_{\aleph_{\alpha}}<2^{\aleph_{\alpha}}$.

3. Forcing with a long sequence of overlapping extenders WITH COLLAPSES

We start with a model of $G C H$, and a sequence $\left\langle\kappa_{i} \mid i<\kappa\right\rangle, \kappa=$ $\sup _{\alpha<\kappa} \kappa_{i}$. Assumptions in V :

- GCH.
- κ is inaccessible.
- For each κ_{i}, E_{i} is a $\left(\kappa_{i}, \kappa^{++}\right)$-extender such that $j_{E_{i}}: V \rightarrow M_{E_{i}}$ is the extender ultrapower, $M_{E_{i}}$ computes cardinals correctly up to and including $\kappa^{++}, M_{E_{i}}^{\kappa_{i}} \subseteq M_{E_{i}}$.
- For each i, we have $s_{i}: \kappa_{i} \rightarrow \kappa_{i}$ the function representing κ in $j_{E_{i}}$, namely $j_{E_{i}}\left(s_{i}\right)\left(\kappa_{i}\right)=\kappa$. We can assume that $s_{i}(\nu)>\max \left\{\nu, \bar{\kappa}_{i}\right\}$ for every ν.
- For each $i_{1}<i_{2}<\kappa$, there is a function $t_{i_{2}}^{i_{1}}: \kappa_{i_{2}} \rightarrow V_{\kappa_{i_{2}}}$ such that $j_{E_{i_{2}}}\left(t_{i_{2}}^{i_{1}}\right)\left(\kappa_{i_{2}}\right)=E_{i_{1}}$, and in particular $E_{i_{1}} \in U l t\left(V, E_{i_{2}}\right)$.
- κ is the least such cardinal.
- For each $\alpha<\kappa$ limit, $\square_{\sup _{\beta<\alpha}} \kappa_{\beta}$. holds.

Remark 3.1. Note that for such κ, κ is an inaccessible cardinal and for every limit $\alpha<\kappa, \sup _{i<\alpha} \kappa_{i}$ is singular, otherwise, $\sup _{i<\alpha} \kappa_{i}$ is also inaccessible, and hence $\alpha=\sup _{i<\alpha} \kappa_{i}$.

Notations:

for every $\beta \leq \kappa$ denote by $\bar{\kappa}_{\beta}=\sup _{\alpha<\beta} \kappa_{\alpha}$. In particular if β is successor then $\bar{\kappa}_{\beta}=\kappa_{\beta-1}$ and if β is limit then $\bar{\kappa}_{\beta}<\kappa_{\beta}$. Also, $\kappa=\bar{\kappa}_{\kappa}$. Also note that for each $\beta, \beta \leq \bar{\kappa}_{\beta}<\kappa_{\beta}$.

Merimovich notations:

- For $i<\kappa$, an $\underline{i \text {-domain }}$ is a set $d \in\left[\kappa^{++}\right]^{\kappa_{i}}$ such that $\kappa_{i}+1 \subseteq d$
- Define $m c_{i}(d)=\left(j_{E_{i}} \upharpoonright d\right)^{-1}=\left\{\left\langle j_{E_{i}}(x), x\right\rangle \mid x \in d\right\}$ (This is the generator of a measure used by Merimovich in his version of Extenderbased forcings).
- Denote the measure generated by $m c_{i}(d)$, by $E_{i}(d)$, namely $X \in$ $E_{i}(d) \Longleftrightarrow m c_{i}(d) \in j_{E_{i}}(X)$.
We define a typical element in a measure one set of $E_{i}(d)$. It is a sequence which will provide a "layer" of points for the continuation of the Prikry sequences appearing in the domain of a given condition. The proof is simply to reflect the properties of the generator $m c_{i}(d)$.

Definition 3.2. An (i, d)-object is a sequence/function μ such that:
(1) $\kappa_{i} \in \operatorname{dom}(\mu) \subseteq d, \operatorname{rng}(\mu) \subseteq s_{i}\left(\mu\left(\kappa_{i}\right)\right)^{++}$.
(2) $|\operatorname{dom}(\mu)|=\mu\left(\kappa_{i}\right)<\kappa_{i}$ and $\mu\left(\kappa_{i}\right)$ is inaccessible.
(3) $\operatorname{dom}(\mu) \cap \kappa_{i}=\mu\left(\kappa_{i}\right)$ and $\mu \upharpoonright \mu\left(\kappa_{i}\right)=i d$.
(4) μ is order preserving.

The set $O B_{i}(d)$ is the set of (i, d)-objects, and $O B_{i}(d) \in E_{i}(d)$ (see the arguments in Definition 2.7). If d is clear from the context, and μ is an (i, d)-object, we denote $i_{\mu}=i$. If $\vec{\mu}=\left\langle\mu_{1}, \cdots, \mu_{n}\right\rangle$ is a sequence of objects, where $i_{\mu_{1}}<\cdots<i_{\mu_{n}}$, denote $i_{\vec{\mu}}$ the ordinal $i_{\mu_{n}}$.

We can omit the ' i ' from the " (i, d)-object" and from $O B_{i}(d)$ since i is determined by d (recall that $|d|=\kappa_{i}$).

The projections: At the price of complicating the notations what we gain is that the projections between the measures of the extender are just restriction:

Definition 3.3. If $d \subseteq d^{\prime}$ are i-domains, let $\pi_{d^{\prime}, d}: O B\left(d^{\prime}\right) \rightarrow O B(d)$ be the restriction function $\pi_{d^{\prime}, d}(\mu)=\mu \upharpoonright d$ (which is equal to $\left.\mu \upharpoonright \operatorname{dom}(\mu) \cap d\right)$.

Clearly the generators and the measures are projected using the restriction map:

Proposition 3.4. (1) $j_{E_{i}}\left(\pi_{d^{\prime}, d}\right)\left(m c_{i}\left(d^{\prime}\right)\right)=m c_{i}(d)$.

(2) $\left(\pi_{d^{\prime}, d}\right)_{*}\left(E_{i}\left(d^{\prime}\right)\right)=E_{i}(d)$, where $\left(\pi_{d^{\prime}, d}\right)_{*}$ is the natural induced map from $\pi_{d^{\prime}, d}$.
Proposition 3.5. (The bound for the number of objects with the same projection to the normal measure) For each $i<\kappa$ and an i-domain d, there
is a set $A_{i}(d)$ such that $A_{i}(d) \in E_{i}(d)$, and for each $\nu<\kappa_{i}$, the size of $\left\{\mu \in A_{i}(d) \mid \mu\left(\kappa_{i}\right)=\nu\right\}$ is at most $s_{i}(\nu)^{++}$.

We keep the notation of $A_{i}(d)$. We also need notations for the normal measure:

- The normal measure $\underline{E_{i}\left(\kappa_{i}\right)}$ is the set of all $X \subseteq \kappa_{i}$ such that $\kappa_{i} \in$ $j_{E_{i}}(X)$.
- If $A \in E_{i}(d)$ (then recall that $\kappa_{i} \in d$) and the projection to normal is denoted by $A\left(\kappa_{i}\right)$ and is define as $A\left(\kappa_{i}\right)=\left\{\mu\left(\kappa_{i}\right) \mid \mu \in A\right\} \in E_{i}\left(\kappa_{i}\right)$

Definition 3.6. $\mathbb{P}_{\left\langle E_{i} \mid i<\kappa\right\rangle}$ is a sequence $p=\left\langle p_{i} \mid i<\kappa\right\rangle$ such that there is a finite set $\operatorname{Supp}(p) \in[\kappa]^{<\omega}$, and we have that:

$$
p_{i}= \begin{cases}\left\langle f_{i}, h_{i}^{0}, h_{i}^{1}\right\rangle & i \in \operatorname{Supp}(p) \\ \left\langle f_{i}, A_{i}, H_{i}^{0}, H_{i}^{1}\right\rangle & i \notin \operatorname{Supp}(p)\end{cases}
$$

Such that for every $i_{1}<i_{2}<\kappa$, $\operatorname{dom}\left(f_{i_{1}}\right) \subseteq \operatorname{dom}\left(f_{i_{2}}\right)$. Denote $\operatorname{Supp}(p)=$ $\left\{i_{1}<i_{2}<\ldots<i_{r}\right\}$, then for every $i<\kappa$:

$$
\bar{\kappa}_{i}<\bar{\kappa}_{i}^{+2}<f_{i}\left(\kappa_{i}\right)<s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)<s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+}<s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{++}<\kappa_{i}
$$

and we require that:
(1) If there is $k<r$ such that $i \in\left[i_{k}, i_{k+1}\right.$) (where $i_{0}=0$), f_{i} is a partial function from $s_{i_{k+1}}\left(f_{i_{k+1}}\left(\kappa_{i_{k+1}}\right)\right)^{++}$to κ_{i} such that $\kappa_{i}+1 \subseteq \operatorname{dom}\left(f_{i}\right)$ and $\left|f_{i}\right|=\kappa_{i}$.
(2) If $i \in\left[i_{r}, \kappa\right)$, then f_{i} is a partial function from κ^{++}to κ_{i} such that $\operatorname{dom}\left(f_{i}\right)$ is an i-domain. We will abusively write " $f_{i} \in A d d\left(\kappa^{++}, \kappa_{i}^{+}\right)$".
(3) for $i \in \operatorname{Supp}(p), h_{i}^{0} \in \operatorname{Col}\left(\bar{\kappa}_{i}^{+2}, s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+}\right), h_{i}^{1} \in \operatorname{Col}\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+3},<\right.$ κ_{i}). (So in the generic extension $V[G]$ we will have: $\bar{\kappa}_{i}<\left(\bar{\kappa}_{i}^{+}\right)^{V[G]}=$ $\bar{\kappa}_{i}^{V}<\left(\bar{\kappa}_{i}^{++}\right)^{V[G]}=\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{++}\right)^{V}<\left(\bar{\kappa}_{i}^{+3}\right)^{V[G]}=\left(s_{i}\left(f_{i}\left(\kappa_{i}\right)\right)^{+3}\right)^{V}<$ $\left.\left(\bar{\kappa}_{i}^{+4}\right)^{V[G]}=\kappa_{i}.\right)$.
(4) For $i \notin \operatorname{Supp}(p)$:
(a) if there is $k<r$ such that $i \in\left[i_{k}, i_{k+1}\right)$, then $A_{i} \in t_{i_{k+1}}^{i}\left(f_{i_{k+1}}\left(\kappa_{i_{k+1}}\right)\right)\left(\operatorname{dom}\left(f_{i}\right)\right)$.
(b) if $i>i_{r}$, then $A_{i} \in E_{i}\left(\operatorname{dom}\left(f_{i}\right)\right)$.
(c) $\operatorname{dom}\left(H_{i}^{0}\right)=A_{i}$ and $\operatorname{dom}\left(H_{i}^{1}\right)=A_{i}\left(\kappa_{i}\right)$.
(d) $H_{i}^{0}(\mu) \in \operatorname{Col}\left(\bar{\kappa}_{i}^{+}, s_{i}\left(\mu\left(\kappa_{i}\right)\right)^{+}\right)$and $H_{i}^{2}\left(\mu\left(\kappa_{i}\right)\right) \in \operatorname{Col}\left(s_{i}\left(\mu\left(\kappa_{i}\right)\right)^{+3},<\right.$ $\left.\kappa_{i}\right)$.
If p is a condition, we usually represent each component of p by putting the superscript p to that component. For example, f_{i} in p is denoted by f_{i}^{p}. We also write $\operatorname{dom}\left(f_{i}^{p}\right)$ as d_{i}^{p}.

Remark 3.7. The collapses are different from Definition 2.11. There is a flexibility to split collapses to be as in Definition 2.11 or merge some collapses as in Definition 3.6. The reason is, we want to demonstrate a flexibility on the cardinal arithmetic on regular cardinals. Ultimately, we will obtain a ZFC model V_{κ} where GCH holds at regulars, SCH fails at singulars, small
ultrafilter numbers everywhere, and κ is the least strongly inaccessible cardinal.

The direct extension is clear:
Definition 3.8. The direct order is defined by $p \leq^{*} q$ if $\operatorname{Supp}(p)=\operatorname{Supp}(q)$, for every $i, f_{i}^{p} \subseteq f_{i}^{q}$ and for
(1) If $i \in \operatorname{Supp}(p)$ then for $h_{i}^{r, p} \leq h_{i}^{r, q}$ for $r=0,1$.
(2) If $i \notin \operatorname{Supp}(p), \pi_{\operatorname{dom}\left(f_{i}^{q}\right), \operatorname{dom}\left(f_{i}^{p}\right)}\left[A_{i}^{q}\right] \subseteq A_{i}^{p} . H_{i}^{0, p}(x) \leq H_{i}^{0, q}\left(\pi_{\operatorname{dom}\left(f_{i}^{q}\right), \operatorname{dom}\left(f_{i}^{p}\right)}(x)\right)$ for all x, and $H_{i}^{1, p}(\gamma) \leq H_{i}^{1, q}(\gamma)$ for all γ.
Definition 3.9. Let $i \notin \operatorname{Supp}(p) . \mu \in A_{i}^{p}$ is addable to p if:
(1) $\bar{\kappa}_{i}<\mu\left(\kappa_{i}\right)$ is inaccessible.
(2) $\cup_{\alpha<i} \operatorname{dom}\left(f_{\alpha}\right) \subseteq \operatorname{dom}(\mu)$ and $\mu \upharpoonright \bar{\kappa}_{i}=i d$.
(3) For every $\beta \in(\max (\operatorname{Supp}(p) \cap i), i),\left\{\nu \circ \mu^{-1} \mid \nu \in A_{\beta}^{p}\right\} \in t_{i}^{\beta}\left(\mu\left(\kappa_{i}\right)\right)\left(\mu\left[\operatorname{dom}\left(f_{\beta}\right)\right]\right)$.

Remark 3.10. The collection of $\mu \in A_{i}^{p}$ which is addable to p is of measureone, since $i \leq \bar{\kappa}_{i}<\kappa_{i}$.
Definition 3.11. Let $i \notin \operatorname{Supp}(p), i_{*}=\max (\operatorname{Supp}(p) \cap i)$, where $\max (\emptyset)=$ -1 and $\mu \in A_{i}^{p}$, define $p+\mu$ as the condition q such that $\operatorname{Supp}(q)=\operatorname{Supp}(p) \cup$ $\{i\}$, and
(1) For $r \in\left[0, i_{*}\right) \cup(i, \kappa), p_{r}=q_{r}$.
(2) For $r=i, f_{i}^{q}=f_{i}^{p}+\mu, h_{i}^{0, q}=H_{i}^{0, p}(\mu), \operatorname{and} h_{i}^{1, q}=H_{i}^{1, p}\left(\mu\left(\kappa_{i}\right)\right)$.
(3) For $r \in\left[i_{*}, i\right)$ with $r \geq 0, f_{r}^{q}=f_{r}^{p} \circ \mu^{-1}$, if $r>i^{*}$, then $A_{r}^{q}=A_{r}^{p} \circ \mu^{-1}$. $H_{r}^{0, q}(\nu)=H_{r}^{0, q}(\nu \circ \mu)$ and $H_{r}^{1, q}=H_{r}^{1, p}$. Finally, if $i_{*} \geq 0$, then $h_{i_{*}}^{0, q}=h_{i_{*}}^{0, p}$ and $h_{i_{*}}^{1, q}=h_{i_{*}}^{1, p}$.
Define $p+\vec{\mu}$ recursively by $p+\left\langle\mu_{1}, \cdots, \mu_{n}\right\rangle=\left(p+\left\langle\mu_{1}, \cdots, \mu_{n-1}\right\rangle\right)+\mu_{n}$. We define $p \leq q$ if $p+\vec{\mu} \leq^{*} q$ for some $\vec{\mu}$ ($\vec{\mu}$ could be empty). Sometimes, we interact an object with the part of the condition that appears before the occurrence of the object, for example, we have a part $p \in \mathbb{P}_{\vec{E}}, d \supseteq d_{i}^{p}$, and $\mu \in O B_{i}(d)$, then $p \upharpoonright i$ is considered as an element in $\mathbb{P}_{\vec{E} \mid i}$, and if $t \in \mathbb{P}_{\vec{E} \mid i}$, we denote t_{μ} a tuple obtained by "squishing t by μ, namely we operate as in Definition 3.11 (1) for $r<i_{*}$ and (3). Note that $t_{\mu} \in \mathbb{P}_{\left\langle t_{i}^{\beta}\left(\mu\left(\kappa_{i}\right)\right) \mid \beta<i\right\rangle}$.

The following definition follows from [1].
Definition 3.12. Let p be a condition, $n>0$. A (p, n)-fat-tree is a tree T of height n such that the following hold:
(1) $\operatorname{Level}_{k}(T)$ is a collection of sequences of objects of length $k+1$.
(2) $\operatorname{Level}_{0}(T) \in E_{i}\left(d_{i}^{p}\right)$ for some i.
(3) If $\vec{\mu}=\left\langle\mu_{1}, \cdots, \mu_{k}\right\rangle \in T$ and $k<n-1$, then there is $i>i_{\vec{\mu}}$ (the definition of $i_{\vec{\mu}}$ is as in Definition 3.2) such that $\operatorname{Succ}_{T}(\vec{\mu}) \in E_{i}\left(\operatorname{dom}\left(f_{i}^{p}\right)\right)$.
We say that T is fully compatible with p if for every non-maximal $\vec{\mu} \in T$, $\operatorname{Succ}_{T}(\vec{\mu})=A_{i_{\vec{\mu}}}^{p}$.

The following two lemmas are easy.

Lemma 3.13. Let $p \in \mathbb{P}_{\vec{E}}$ and T be a (p, n)-fat-tree.
(1) If T is fully compatible with p, then the collection $\{p+\vec{\mu} \mid \vec{\mu} \in T$ is maximal\} is predense above p.
(2) There is $p^{*} \geq^{*} p$ and $a\left(p^{*}, n\right)$-fat tree T^{*} with T^{*} is a subtree of T of the same height such that T^{*} of the same height, and T^{*} is fully compatible with p^{*}.
Lemma 3.14. Let T be a (p, n)-fat tree and $F:\{\vec{\mu} \in T \mid \vec{\mu}$ is maximal $\} \rightarrow \gamma$, $\gamma<\kappa_{i}$ where $\operatorname{Level}_{0}(T) \in E_{i}(d)$ for some d. Then there is a fat subtree $T^{\prime} \subseteq T$ of the same height such that $F \upharpoonright\left\{\vec{\mu} \in T^{\prime} \mid \vec{\mu}\right.$ is maximal $\}$ is constant.

Lemma 3.15 (The integration lemma [14]). Let p be a condition $i \notin \operatorname{Supp}(p)$, $d^{*} \supseteq d_{i}^{p}, A^{*} \upharpoonright d_{i}^{p} \subseteq A_{i}^{p}$. Suppose that for each $\mu \in A^{*}$, lett $(\mu) \geq^{*}(p \upharpoonright i)_{\mu}$ and $h^{0}(\mu) \geq\left(H_{i}^{0}\right)^{p}\left(\mu \upharpoonright d_{i}^{p}\right)$. Then there is $p^{*} \geq^{*} p$ such that for each $\tau \in A_{i}^{p^{*}}$ with $\mu=\tau \upharpoonright d^{*},\left(p^{*} \upharpoonright i\right)_{\tau}=t(\mu)$ and $\left(H_{i}^{0}\right)^{p^{*}}(\tau)=h^{0}(\mu)$.

Theorem 3.16 (The strong Prikry property). Let D be a dense open subset of $\mathbb{P}_{\vec{E}}$ and p be a condition. Then there is a direct extension $p^{*} \geq^{*} p$ and $a\left(p^{*}, n\right)$-fat-tree T, for some n, which is fully compatible with p^{*} such that for every maximal $\vec{\mu} \in T, p^{*}+\vec{\mu} \in D$.

Remark 3.17. The proof of the strong Prikry property requires an induction of the length of the sequence of extenders. The proof where the sequence has short length was shown in [14]. The proofs for the forcings from longer sequences of extenders where the lengths are below κ are essentially the same as the proof of Theorem 3.18. We shall only show the strong Prikry property for $\mathbb{P}_{\vec{E}}$ while we apply the Prikry property of the forcings where the lengths of the sequences of extenders are below κ implicitly.
Proof of Theorem 3.16. Let p be a condition and D be a dense open set. If there is $p^{*} \geq^{*} p$ such that $p^{*} \in D$, then the proof is done. Suppose it is not the case. For simplicity, assume p is pure. The plan is to build $\left\langle p^{n} \mid 0<n<\omega\right\rangle$ such that for each n, either every direct extension of an n-step extension of p^{n} is not in D, or there is a $\left(p^{n}, n\right)$-fat-tree T^{n} fully compatible with p^{n} such that every n-step extension of p^{n} using a maximal node in T is in D.

Stage 1: step A We build $\mathrm{a} \leq^{*}$-increasing sequence $\left\langle q^{i} \mid i<\kappa\right\rangle$ such that
(1) $q^{0} \geq^{*} p$.
(2) for $i^{\prime}<i, q_{i^{\prime}}^{i}=q_{i^{\prime}}^{i^{\prime}}$.

In the end, we can take q^{*} such that $q_{i}^{*}=q_{i}^{i}$. Then $q^{*} \geq^{*} p$. q^{*} will satisfy Claim 3.18. Fix $i<\kappa$. Assume $q^{i^{\prime}}$ is constructed for $i^{\prime}<i$. Let q^{\prime} be such that for all j, q_{j}^{\prime} is the weakest " $\leq^{*} "$-upper bound bound of $\left\{q_{j}^{i^{\prime}} \mid i^{\prime}<i\right\}$, namely we take the union of Cohen functions, intersect the measure-one sets, and their functions whose outputs are collapses, we take the pointwise-lower bound. Note that for $i^{\prime}<i, q_{i^{\prime}}^{\prime}=q_{i^{\prime}}^{i^{\prime}}$. Clearly, q^{\prime} is a \leq^{*}-lower bound of $\left\{q^{i^{\prime}} \mid i^{\prime}<i\right\}$. Write $q_{i}^{\prime}=\left\langle f, A, H^{0}, H^{1}\right\rangle$. Define

$$
\begin{gathered}
\mathbb{R}_{i}^{*}=\left\{(g, r) \mid g \in A d d\left(\kappa^{++}, \kappa_{i}^{+}\right), r \in\left(\mathbb{P}_{\left\langle E_{\beta} \mid \beta>i\right\rangle}, \leq^{*}\right), \text { and } \operatorname{dom}(g)\right. \text { is a } \\
\text { subset of the domains of Cohen parts in } r\}
\end{gathered}
$$

Let $N \prec H_{\theta}$ for some sufficiently large $\theta,{ }^{<\kappa_{i}} N \subseteq N, \kappa_{i}, q^{\prime}, \mathbb{P}, \mathbb{R}_{i}^{*}, D \in N$, $|N|=\kappa_{i}$. Enumerate dense open subsets of \mathbb{R}_{i}^{*} in N as $\left\langle D_{\alpha} \mid \alpha<\kappa_{i}\right\rangle$ such that every proper initial segment is in N. Build an \mathbb{R}_{i}^{*}-increasing sequence $\left\langle\left(f_{\alpha}, r_{\alpha}\right) \mid \alpha<\kappa\right\rangle$ above $\left(f, q^{\prime} \backslash(i+1)\right)$ such that $\left(f_{\alpha}, r_{\alpha}\right) \in D_{\alpha}$ for all α. Let $f^{*}=\cup_{\alpha<\kappa_{i}} f_{\alpha}$ and r^{*} be the minimal \leq^{*}-upper bound of $\left\langle r_{\alpha} \mid \alpha<\kappa\right\rangle$. Then $\left(f^{*}, r^{*}\right)$ is $\left(N, \mathbb{R}_{i}^{*}\right)$-generic in a strong sense: for $D^{\prime} \in N$ open dense subset of \mathbb{R}_{i}^{*}, there is $\left(f^{\prime}, r^{\prime}\right) \in D^{\prime}$ such that $\left(f^{*}, r^{*}\right) \geq\left(f^{\prime}, r^{\prime}\right) \geq\left(f, q^{\prime} \backslash(i+1)\right)$. Note that $d^{*}:=\operatorname{dom}\left(f^{*}\right)=N \cap \kappa^{++}$. Let $A^{*} \in E_{i}\left(d^{*}\right), A^{*} \subseteq A_{i}\left(d^{*}\right)$ ($A_{i}\left(d^{*}\right)$ is as in Lemma 3.5), and A^{*} project down to a subset of A. Then $A^{*} \subseteq N$. Fix $\gamma \in A^{*}\left(\kappa_{i}\right)$. In N, let $\left\{\left(t_{\alpha}, \mu_{\alpha}, h_{\alpha}^{0}\right) \mid \alpha<s_{i}(\gamma)^{++}\right\}$be an enumeration of $\left(t, \mu, h^{0}\right)$ such that $t \in \mathbb{P}_{\left\langle t_{i}^{\beta}(\gamma) \mid \beta<i\right\rangle}, \mu \in A^{*}$ with $\mu\left(\kappa_{i}\right)=\gamma$, $h^{0} \in \operatorname{Col}\left(\bar{\kappa}_{i}^{+}, s_{i}(\gamma)^{+}\right)$. Let D_{γ} be the collection $(g, r) \in \mathbb{R}_{i}^{*}$ such that for all $\alpha<s_{i}(\gamma)^{++}$,

- $\operatorname{dom}\left(\mu_{\alpha}\right) \subseteq \operatorname{dom}(g)$.
- there is $h^{1} \geq H^{1}(\gamma)$ such that if there are $g^{\prime} \geq g \oplus \mu_{\alpha}, h^{\prime} \geq H^{1}(\gamma)$, and $r^{\prime} \geq^{*} r$ with

$$
t_{\alpha} \frown\left\langle g^{\prime}, h_{\alpha}^{0}, h^{\prime}\right\rangle \frown r^{\prime} \in D,
$$

then

$$
t_{\alpha} \frown\left\langle g \oplus \mu_{\alpha}, h_{\alpha}^{0}, h^{1}\right\rangle \frown r \in D .
$$

Since \mathbb{R}_{i}^{*} and $\operatorname{Col}\left(s_{i}(\gamma)^{+3},<\kappa_{i}\right)$ are $s_{i}(\gamma)^{+3}$-closed, $D_{\gamma} \in N$ is open dense and is in N. By genericity, $\left(f^{*}, r^{*}\right) \in D_{\gamma}$ with a witness h^{1}. Define $\left(H^{1}\right)^{*}(\gamma)=h^{1}$. Let q^{i} be such that $q^{i} \upharpoonright i=q^{\prime} \upharpoonright i, q_{i}^{i}=\left\langle f^{*}, A^{*},\left(H^{0}\right)^{*},\left(H^{1}\right)^{*}\right\rangle \frown r^{*}$, where $\left(H^{0}\right)^{*}(\tau)=\left(H^{0}\right)(\tau \upharpoonright \operatorname{dom}(f)) \cdot q^{i}$ has the following property: for each $\mu \in A_{i}^{q^{i}}$, if t, g, h^{0}, h^{1} and r are such that

$$
t^{\frown}\left\langle g, h^{0}, h^{1}\right\rangle \frown r \geq q^{i}+\langle\mu\rangle, r \geq^{*}\left(q^{i}+\langle\mu\rangle\right) \backslash(i+1)\left(\text { which is } q^{i} \backslash(i+1)\right),
$$

and

$$
t \frown\left\langle g, h^{0}, h^{1}\right\rangle \frown r \in D,
$$

then

$$
t\left\ulcorner\left\langle f_{i}^{q^{i}} \oplus \mu, h^{0},\left(H^{1}\right)^{q^{i}}\left(\mu\left(\kappa_{i}\right)\right)\right\rangle \smile\left(q^{i} \backslash(i+1)\right) \in D .\right.
$$

Recall that we take q^{*} such that $q_{i}^{*}=q_{i}^{i}$ for all i.
Claim 3.18. For all $i<\kappa, \mu \in A_{i}^{q^{*}}$, if there are t, g, h^{0}, h^{1}, and r such that

$$
t \smile\left\langle g, h^{0}, h^{1}\right\rangle \frown r \geq q^{*}+\langle\mu\rangle, r \geq^{*}\left(q^{*}+\langle\mu\rangle\right) \backslash(i+1),
$$

and

$$
t^{\frown}\left\langle g, h^{0}, h^{1}\right\rangle \frown r \in D,
$$

then

$$
t \frown\left\langle f_{i}^{q^{*}} \oplus \mu, h^{0},\left(H_{i}^{1}\right)^{q^{*}}\left(\mu\left(\kappa_{i}\right)\right)\right\rangle \frown\left(q^{*} \backslash(i+1)\right) \in D .
$$

Proof. The claim is just a consequence of the property of q^{i} for all i.
Step B We now consider the following two cases:
Case 1: For each $i<\kappa$, the collection B_{i} of $\mu \in A_{i}^{q^{*}}$ such that "there are t, h^{0} such that $t \geq^{*}\left(q^{*}+\langle\mu\rangle\right) \upharpoonright i, h^{0} \geq\left(H_{i}^{0}\right)^{q^{*}}(\mu)$, and $t\left\ulcorner\left\langle f_{i}^{q^{*}} \oplus\right.\right.$ $\left.\mu, h^{0},\left(H_{i}^{1}\right)^{q^{*}}\left(\mu\left(\kappa_{i}\right)\right)\right\rangle q^{*} \backslash(i+1) \in D "$ is of measure-zero. In this case, let p^{1} be such that $p_{i}^{1}=\left\langle f_{i}^{q^{*}}, B_{i}^{*},\left(H_{i}^{0}\right)^{q^{*}} \upharpoonright B_{i}^{*},\left(H_{i}^{1}\right)^{q^{*}} \upharpoonright\left(B_{i}^{*}\left(\kappa_{i}\right)\right)\right\rangle$, where $B_{i}^{*}=A_{i}^{q^{*}} \backslash B_{i}$.

Case 2: The negation of Case 1. This means that there is $i<\kappa$, a measure-one set $B \subseteq A_{i}^{q^{*}}$ such that for each $\mu \in B$, there are $t=t(\mu)$ and $h^{0}=h^{0}(\mu)$ such that $t \geq^{*}\left(q^{*}+\langle\mu\rangle\right) \upharpoonright i$ and $h^{0} \geq\left(H_{i}^{0}\right)^{q^{*}}(\mu)$ such that

$$
t\left\ulcorner\left\langle f_{i}^{q^{*}} \oplus \mu, h^{0},\left(H_{i}^{1}\right)^{q^{*}}\left(\mu\left(\kappa_{i}\right)\right)\right\rangle \frown\left(q^{*} \backslash(i+1)\right) \in D .\right.
$$

Let i be the least such. Use Lemma 3.15 with $t(\mu)$ and $h^{0}(\mu)$ to obtain p^{1} such that for all $\tau \in A_{i}^{p^{1}}$ with $\mu=\tau \upharpoonright d_{i}^{q^{*}},\left(p^{1} \upharpoonright i\right)_{\tau}=t(\mu)$ and $\left(H_{i}^{0}\right)^{p^{1}}(\tau)=$ $h^{0}(\mu)$.

We now have that $p^{1} \geq^{*} p$ and for $\tau \in A_{i}^{p^{1}},\left(p^{1} \upharpoonright i\right)_{\tau}=t\left(\tau \upharpoonright d_{i}^{q^{*}}\right)$. With the property of q^{*}, one can check that if there is a direct extension of a onestep extension of p^{1} entering D, then every one-step extension of p^{1} using an object in $A_{i}^{p^{1}}$ is in D. If this is the case, let $p^{*}=p^{1}$, and then we are done.

Stage $n(1<n<\omega)$:

Remark 3.19. Note that the proof for Stage 1 holds for any condition. Furthermore, by induction hypothesis, we will assume that for any condition r (in any slight variation of the long extender-based forcing with collapses, e.g. $\mathbb{P}_{\vec{E} \backslash i}$ for some i), and a dense open set D^{*}, for $k<n$, there is $r^{*} \geq^{*} r$ such that if there is a direct extension of a k-step extension of r^{*} entering D^{*}, then there is a $\left(k, r^{*}\right)$-fat tree S^{*} fully compatible with r^{*} such for every $\vec{\tau} \in S^{*}$ maximal, $r^{*}+\vec{\tau} \in D^{*}$. The statement holds for the exact proof as in Stage 1.
step A This will be similar to step A in Stage 1, except that the dense sets we are considering in this stage are more complicated. Suppose p^{k} has been constructed for $k<n$. Assume that if there is an $n-1$-step extension of p^{n-1} being in D, then there is ($p^{n-1}, n-1$)-fat tree fully compatible with p^{n-1} such that every extension of p^{n-1} using a maximal node in the tree belongs to D. Let $p^{\prime}=p^{n-1}$.

Build a \leq^{*}-increasing sequence $\left\langle q^{i} \mid i<\kappa\right\rangle$ such that
(1) $p^{\prime} \leq^{*} q^{0}$.
(2) for $i^{\prime}<i, q_{i^{\prime}}^{i}=q_{i^{\prime}}^{i^{\prime}}$.

Again, we take q^{*} such that $q_{i}^{*}=q_{i}^{i}$ for all i and q^{*} will satisfy a certain property. Fix $i<\kappa$, and assume for $i^{\prime}<i, q_{i^{\prime}}$ is constructed. Let q^{\prime} be the least \geq^{*}-upper bound of $\left\langle q^{i^{\prime}} \mid i^{\prime}<i\right\rangle$. Hence, for $i^{\prime}<i, q_{i^{\prime}}^{\prime}=q_{i^{\prime}}^{i^{\prime}}$. Write $q_{i}^{\prime}=\left\langle f, A, H^{0}, H^{1}\right\rangle, d=\operatorname{dom}(f)$. Let \mathbb{R}_{i}^{*} be as in Stage 1 and

$$
\mathbb{R}_{i}=\left\{(g, r) \mid g \in \operatorname{Add}\left(\kappa^{++}, \kappa_{i}^{+}\right), r \in\left(\mathbb{P}_{\left\langle E_{\beta} \mid \beta>i\right\rangle}, \leq\right),\right. \text { and }
$$ $\operatorname{dom}(g)$ is a subset of the domains of Cohen parts in $r\}$.

Note that \mathbb{R}_{i} and \mathbb{R}_{i}^{*}, as sets, are equal. The difference is the ordering. Let $N \prec H_{\theta}$ for some sufficiently large $\theta,{ }^{<\kappa_{i}} N \subseteq N, \kappa_{i}, \mathbb{P}, \mathbb{R}_{i}^{*}, \mathbb{R}_{i}, D, q^{\prime} \in N$, $|N|=\kappa_{i}, \kappa_{i}+1 \subseteq N$, and let $\left\langle\left(f_{\alpha}, r_{\alpha}\right) \mid \alpha<\kappa_{i}\right\rangle$ be an \mathbb{R}_{i}^{*}-increasing sequence above ($f, q^{\prime} \backslash(i+1)$) such that every dense set contains an element in the sequence, and every proper initial segment of the sequence is in N. By letting $f^{*}=\cup_{\alpha<\kappa_{i}} f_{\alpha}$, and r^{*} the least \leq^{*}-upper bound of $\left\langle r_{\alpha} \mid \alpha<\kappa\right\rangle$, then $\left(f^{*}, r^{*}\right)$ is $\left(N, \mathbb{R}_{i}^{*}\right)$-generic in the strong sense, as described in Stage 1, Step A. Let $d^{*}=\operatorname{dom}\left(f^{*}\right)=N \cap \kappa^{++}, A^{*} \in E_{i}\left(d^{*}\right)$ project down to a subset of A and $A^{*} \subseteq A_{i}\left(d^{*}\right)$. Then $A^{*} \subseteq N$.

Fix $\gamma \in A^{*}\left(\kappa_{i}\right)$. In N, for each μ, define

$$
\begin{aligned}
& \bar{D}_{\mu}=\left\{\left(g, r, h^{1}\right) \geq_{\mathbb{R}_{i} \times \operatorname{Col}\left(s_{i}(\gamma)+3,<\kappa_{i}\right)}\left(f \oplus \mu, q^{\prime} \backslash(i+1), H^{0}(\gamma)\right) \mid\right. \text { there are } \\
&\left.t \geq\left(q^{\prime} \upharpoonright i\right)_{\mu}, h^{0} \geq\left(H^{0}\right)(\mu \upharpoonright d) \text { with } t _\left\langle g, h^{0}, h^{1}\right\rangle \subset r \in D\right\} .
\end{aligned}
$$

Clearly $\bar{D}_{\mu} \in N$ is open dense in $\mathbb{R}_{i} \times \operatorname{Col}\left(s_{i}(\gamma)^{+3},<\kappa_{i}\right)$ above $\left(f \oplus \mu, q^{\prime} \backslash\right.$ $\left.(i+1), H^{0}(\gamma)\right)$. We now define D_{γ} as the collection of $(g, r) \in \mathbb{R}_{i}^{*}$ such that there is $\left(h^{1}\right)^{*} \geq\left(H_{i}^{1}\right)(\gamma)$ satisfying the following requirement: for each $\mu \in A^{*}$ with $\mu\left(\kappa_{i}\right)=\gamma$,

- $\operatorname{dom}(\mu) \subseteq \operatorname{dom}(g)$.
- for all $t \geq^{*}\left(q^{\prime} \upharpoonright i\right)_{\mu}, h^{0} \geq H^{0}(\gamma)$, if there are $g^{\prime} \geq g \oplus \mu, h^{1} \geq\left(h^{1}\right)^{*}$ $a \in[\{\xi \mid i<\xi<\kappa\}]^{n-1}, \vec{\tau} \in \prod_{\beta \in a} A_{\beta}^{r}$, and $r^{\prime} \geq^{*} r+\vec{\tau}$ such that

$$
t \smile\left\langle g^{\prime}, h^{0}, h^{1}\right\rangle \smile r^{\prime} \in \bar{D}_{\mu},
$$

then there is a $(r, n-1)$-fat tree T such that for every maximal $\vec{\tau} \in T$,

$$
t^{\frown}\left\langle g \oplus \mu, h,\left(h^{1}\right)^{*}\right\rangle \smile(r+\vec{\tau}) \in \bar{D}_{\mu} .
$$

By our induction hypothesis as in Remark 3.19 (we apply the remark with $\mathbb{P}_{\vec{E} \backslash(i+1)}$), the property of p^{n-1}, and the fact that the number of such t and h^{0} is at most $s_{i}(\gamma)^{+2}$, which is below the closure of \mathbb{R}_{i}^{*} and $\operatorname{Col}\left(s_{i}(\gamma)^{+3},<\kappa_{i}\right)$, we have that D_{γ} is open dense in N. Hence, $\left(f^{*}, r^{*}\right) \in D_{\gamma}$, we obtain a witness $\left(h^{1}\right)^{*}=:\left(h^{1}\right)^{\gamma}$. Let $\left(H^{1}\right)^{*}(\gamma)=\left(h^{1}\right)^{\gamma}$. Let q^{i} be such that $q^{i} \upharpoonright$ $i=q^{\prime} \upharpoonright i, q_{i}^{i}=\left\langle f^{*}, A^{*},\left(H^{0}\right)^{*},\left(H^{1}\right)^{*}\right\rangle r^{*}$, where, $\left(H^{0}\right)^{*}(\tau)=\left(H^{0}\right)(\tau \upharpoonright d)$. Recall that we take q^{*} as the least \leq^{*}-upper bound of $\left\langle q^{i} \mid i<\kappa\right\rangle$. We have that q^{*} has the follow property: $\operatorname{Fix} i<\kappa$ and $\mu \in A_{i}^{q^{*}}$. Then,

- either for every $t \geq\left(q^{*} \mid i\right)_{\mu}, h^{0} \geq\left(H_{i}^{0}\right)^{q^{*}}, a \in[\{\xi \mid i<\xi<\kappa\}]^{n-1}$, and $\vec{\tau} \in \prod_{\beta \in a} A_{\beta}^{q^{*}}$, we have that $t\left\ulcorner\left\langle f_{i}^{q^{*}} \oplus \mu, h^{0},\left(H_{i}^{1}\right)^{q^{*}}\left(\mu\left(\kappa_{i}\right)\right)\right\rangle \frown\left(q^{*} \backslash\right.\right.$ $(i+1)) \notin D$,
- or there are $t \geq\left(q^{*} \upharpoonright i\right)_{\mu}, h^{0} \geq\left(H_{i}^{0}\right)^{q^{*}}$, and a fat tree T of height $n-1$ (not necessarily fully compatible with q^{*}) such that for every $\vec{\tau} \in T$ maximal, $t^{\frown}\left\langle f_{i}^{q^{*}} \oplus \mu, h^{0},\left(H_{i}^{1}\right)^{q^{*}}\left(\mu\left(\kappa_{i}\right)\right) \frown \vec{r} \in D\right.$.

The reason that in the latter case, T might not be fully compatible with q^{*} is that by the property of $D_{\mu\left\lceil d_{i}^{q^{i}}\right.}$, there is an $\left(n-1, q^{*} \backslash(i+1)\right)$-fat tree fully compatible with q^{*} such that for each $\vec{\tau}$ maximal in the tree, there are witnesses $t=: t_{\vec{\tau}}$ and $h^{0}=: h_{\vec{\tau}}^{0}$. We then use Lemma 3.14 to shrink the fat tree to get the fixed t and h^{0}.

Step B By the Prikry property (see Remark 3.17) we have a possibility to choose $s \geq^{*}\left(q^{*} \mid i\right)_{\mu}$ and $h^{0} \geq\left(H_{i}^{0}\right)^{q^{*}}$ so that we have the following two cases.

Case 1: For all $i<\kappa$, the collection B_{i} of $\mu \in O B_{i}\left(d_{i}^{q^{*}}\right)$ such that "for every $t \geq^{*}\left(q^{*} \upharpoonright i\right)_{\mu}, h^{0} \geq\left(H_{0}^{i}\right)^{q^{*}}(\mu), a \in[\{\xi \mid i<\xi<\kappa\}]^{n-1}$ and $\vec{\tau} \in \prod_{\beta \in a} A_{\beta}^{q^{*}}$ with $t \leftharpoonup\left\langle f_{i}^{q^{*}} \oplus \mu, h,\left(H_{i}^{i}\right)^{q^{*}}\left(\mu\left(\kappa_{i}\right)\right)\right\rangle \smile\left(q^{*} \backslash(i+1)\right)+\vec{\tau} \notin D$ " is of measure-one. For this case, let p^{n} be obtained from q^{*} by shrink $A_{i}^{q^{*}}$ to B_{i}.

Case 2: There is $i<\kappa$ such that the collection of B_{i} of μ such that "there are $t \geq^{*}\left(q^{*} \upharpoonright i\right)_{\mu}, h^{0} \geq\left(H_{0}^{i}\right) q^{*}(\mu)$, and a $\left(n-1, q^{*} \backslash(i+1)\right)$-fat tree T such that for each $\vec{\tau} \in T$ maximal, $\left.t(\mu) \frown f_{i}^{q^{*}} \oplus \mu, h^{0},\left(H_{i}^{1}\right)^{q^{*}}\left(\mu\left(\kappa_{i}\right)\right)\right\rangle \smile\left(q^{*} \backslash(i+1)\right)+\vec{\tau} \in$ D " is of measure-one. Assume i is the least such. For each μ, let $t=t(\mu)$ and $h^{0}=h^{0}(\mu)$ and $T=T(\mu)$ be the witnesses for the property. Use Lemma 3.15 to obtain $p^{n} \geq^{*} q$ so that for every $\tau \in A_{i}^{p^{n}},\left(p^{n} \upharpoonright i\right)_{\tau}=t\left(\tau \upharpoonright d_{i}^{q^{*}}\right)$, and there is a $\left(n-1, p^{n}\right)$-fat tree $T^{*}(\tau)$ which projects down to a subtree of $T\left(\tau \upharpoonright d_{i}^{q^{*}}\right)$. Let T be such that $\operatorname{Level}_{0}(T) \in E_{i}\left(d_{i}^{p^{n}}\right), \operatorname{Level}_{0}(T)$ projects down to a subset of B_{i}, and for $\tau \in \operatorname{Level}_{0}(T), T_{\tau}=T^{*}(\tau)$. Shrink all relevant measure-one sets in p^{n} so that all relevant objects appear in T, and finally, shrink T to be fully compatible with p^{n}.

We conclude the following property of p^{n} : if there is a direct extension of an n-step extension of p^{n} entering D, then there is a $\left(p^{n}, n\right)$-fat tree T which is compatible with p^{n} such that for every maximal node $\vec{\tau} \in T, p^{n}+\vec{\tau} \in D$.

Now, let p^{*} be a \geq^{*}-upper bound of $\left\langle p^{n} \mid n<\omega\right\rangle$. If $q \geq p^{*}$ and $q \in D$, then $q \geq^{*} p^{*}+\vec{\tau}$ for some ρ. Say $|\vec{\tau}|=n$. Assume that $n>1$ (the case $n=1$ is slightly simpler). This implies that $q \geq^{*} p^{*}+\vec{\tau} \geq p^{n}+\vec{\tau}^{\prime}$, where $\vec{\tau}^{\prime}$ is obtained by restricting functions in $\vec{\tau}$ properly. This implies that there is an $\left(p^{n}, n\right)$-tree T such that for every $\vec{\mu} \in T$ maximal, $p^{n}+\vec{\mu} \in D$. Let T^{*} be a pullback of T so that T^{*} is fully compatible with p^{*}. Then for every $\vec{\mu} \in T^{*}$ maximal, $p^{*}+\vec{\mu} \in D$.

Corollary 3.20. $\left(\mathbb{P}_{\vec{E}}, \leq, \leq^{*}\right)$ has the Prikry property. Namely for each forcing statement φ and a condition p, there is $p^{*} \geq^{*} p$ that either $p^{*} \Vdash \varphi$ or $p^{*} \Vdash \neg \varphi$.

Proof. Let $D=\{q \mid q \Vdash \varphi$ or $q \Vdash \neg \varphi\}$. Let $p^{*} \geq^{*} p$ and a fat tree T fully compatible with p^{*} witnessing the strong Prikry property for D. By shrinking measure-one sets and the fat tree as in Lemma 3.14, we may assume that either for all maximal $\vec{\mu} \in T, p+\vec{\mu} \Vdash \varphi$, or for all maximal $\vec{\mu} \in T, p+\vec{\mu} \Vdash \varphi$. Let $q \geq p^{*}$ be such that q decides φ. Without loss of generality, assume $q \Vdash \varphi$. Extend if necessary, assume $q \geq p^{*}+\vec{\mu}$ for some maximal $\vec{\mu} \in T$. This means that for every maximal $\vec{\tau} \in T, p^{*}+\vec{\tau} \Vdash \varphi$. Since $\left\{p^{*}+\vec{\tau} \mid \vec{\tau} \in T\right.$ is maximal $\}$ is predense above p^{*}, we have that $p^{*} \Vdash \varphi$.

Following the standard arguments of factorization, Prikry property, and the strong Prikry property, we have the following cardinal arithmetic

Theorem 3.21. After forcing with $\mathbb{P}_{\left\langle E_{i} \mid i<\kappa\right\rangle}$, we have that
(1) κ is the first inaccessible cardinal.
(2) GCH holds for every regular cardinal below κ. Each singular cardinal below κ is a strong limit, and SCH fails for every singular cardinal below κ.
(3) for every singular cardinal $\lambda<\kappa, \mathfrak{u}_{\lambda}=\lambda^{+}<\lambda^{++}=2^{\lambda}$.

Proof. (1) Note that κ is strong limit. If κ is singular, then let $p \in \mathbb{P}_{\vec{E}}$, $\alpha<\kappa$, and \dot{f} be a \mathbb{P}-name such that $p \Vdash \dot{f}: \alpha \rightarrow \kappa$ is cofinal. Extend p if necessary, assume $\alpha+1 \in \operatorname{Supp}(p)$. Forcing above p factors to $\mathbb{P}_{0} \times \mathbb{P}_{1}$ where $\left|\mathbb{P}_{0}\right|=s_{\alpha+1}\left(f_{\alpha+1}^{p}\left(\kappa_{\alpha+1}\right)\right)^{+2}$ and $\left(\mathbb{P}_{1}, \leq^{*}\right)$ is $s_{\alpha+1}\left(f_{\alpha+1}^{p}\left(\kappa_{\alpha+1}\right)\right)^{+3}$-closed. By the Prikry property and by theo closure, we can find $q \geq^{*} p \upharpoonright \mathbb{P}_{1}$ such that for each $\gamma<\alpha$, there is a maximal antichain $A_{\gamma} \subseteq \mathbb{P}_{0}$ above $p \upharpoonright \mathbb{P}_{0}$ such that for every $r \in A_{\gamma}$, $r \frown q$ decides $\dot{f}(\gamma)$. In V, let $X=\left\{\xi \mid \exists \gamma \exists r \in A_{\gamma}\left(r^{\frown q} \Vdash^{\circ}(\gamma)=\xi\right)\right\}$. Then $|X|<\kappa$ and $\left(p \upharpoonright \mathbb{P}_{0}\right) \frown q \Vdash \operatorname{rng}(\dot{f}) \subseteq X$, which is a contrau
(2) Follow the same analysis as in [14].
(3) The argument is similar to Theorem 2.17 except that we apply the version of the strong Prikry property in this section.

Remark 3.22. Since the forcing is κ^{++}-c.c., all cardinals above and including κ^{++}are preserved. One can follow the argument in [1] to show that κ^{+}is also preserved.

Corollary 3.23. It is consistent that GCH holds at every regular and SCH fails at every singular λ while $\mathfrak{u}_{\lambda}=\lambda^{+}$.

Proof. From the previous model $V^{\mathbb{P}_{\left\langle E_{i} \mid i<\kappa\right\rangle}}$, just take $M=\left(V^{\mathbb{P}_{\left\langle E_{i} \mid i<\kappa\right\rangle}}\right)_{\kappa}$ which is a $Z F C$ model (by inaccessibility of κ) which exhibit the corollary.

Corollary 3.24. It is consistent that an inaccessible κ satisfy $\mathfrak{u}_{\kappa}>\kappa^{+}$while there is club $C \subseteq \kappa$ such that for every $\lambda \in C, \mathfrak{u}_{\lambda}=\lambda^{+}<2^{\lambda}$.

Proof. From the model $V^{\mathbb{P}_{\left\langle E_{i} \mid i<\kappa\right\rangle}}$ force with $\operatorname{Add}\left(\kappa, \kappa^{++}\right)$, then by the κ closure of the forcing we did not change \mathfrak{u}_{λ} for $\lambda<\kappa$ and $\mathfrak{u}_{\kappa}=\kappa^{++}$in the extension.

4. Open problems

Question 4.1. What is \mathfrak{u}_{κ} in the model of theorem 3.21?

References

1. Omer Ben-Neria and Jing Zhang, Approximating diamond principles on products at an inaccessible cardinal, Submiited (2022).
2. A.D. Brooke-Taylor, V. Fischer, S.D. Friedman, and D.C. Montoya, Cardinal characteristics at κ in a small $\mathfrak{u}(\kappa)$ model, Annals of Pure and Applied Logic 168 (2017), no. 1, 37-49.
3. Eduard Cech, On bicompact spaces, Annals of Mathematics 38 (1937), no. 4, 823-844.
4. James Cummings, Iterated Forcing and Elementary Embeddings, pp. 775-883, Springer Netherlands, Dordrecht, 2010.
5. James Cummings and Charles G. Morgan, Ultrafilters on singular cardinals of uncountable cofinality, arXiv: Logic (2019), preprint.
6. Shimon Garti, Moti Gitik, and Saharon Shelah, Cardinal characteristics at aleph omega, Acta. Mathematica Hungarica 160 (2020), 320-336.
7. Shimon Garti, Menachem Magidor, and Saharon Shelah, On the spectrum of characters of ultrafilters, Notre Dame J. Formal Log. 59 (2016), 371-379.
8. Shimon Garti and Saharon Shelah, A strong polarized relation, The Journal of Symbolic Logic 77 (2012), no. 3, 766-776.
9. Shimon Garti and Saharon Shelah, The ultrafilter number for singular cardinals, Acta. Mathematica Hungarica 137 (2012), 296-301.
10. Moti Gitik, Prikry Type Forcings, pp. 1351-1447, Springer Netherlands, Dordrecht, (2010).
11. , A uniform ultrafilter over a singular cardinal with a singular character, Acta Math. Hungar 162 (2020), 325-332.
12. Moti Gitik and Saharon Shelah, On densities of box products, Topology and its Applications 88 (1996), 219-237.
13. C. Ward Henson, Foundations of nonstandard analysis, pp. 1-49, Springer Netherlands, Dordrecht, 1997.
14. Sittinon Jirattikansakul, Blowing up the power of singular cardinal of uncountable cofinality with collapses, preprint (2020), arXiv:2011.00409.
15. Péter Komjáth and Vilmos Totik, Ultrafilters, The American Mathematical Monthly 115 (2008), no. 1, 33-44.
16. Kenneth Kunen, Introduction to independence proofs, North-Holand, 1980.
17. Menachem Magidor, On the singular cardinals problem ii, Annals of Mathematics 106 (1977), no. 3, 517-547.
18. Carmi Merimovich, Extender-based radin forcing, Transactions of the American Mathematical Society 355 (2003), no. 5, 1729-1772.
19. Lon Berk Radin, Adding Closed Cofinal Sequences to Large Cardinals, Annals of Mathematical Logic 22 (1982), no. 3, 243--261.
20. Dilip Raghavan and Saharon Shelah, A Small Ultrafilter Number at Smaller Cardinals, Archive for Mathematical Logic 59 (2020), 325-334.
21. M. H. Stone, Applications of the theory of boolean rings to general topology, Transactions of the American Mathematical Society 41 (1937), no. 3, 375-481.

[^0]: Date: February 2023.
 The second author was partially supported by ISF grant No. 1216/18. The authors would like to thank Moti Gitik for useful discussion.

[^1]: ${ }^{1}$ The order $A \subseteq^{*} B$ is defined by $A \backslash B$ is bounded in κ.
 ${ }^{2}$ An ultrafilter U over κ is uniform if for every $X \in U,|X|=\kappa$.

[^2]: ${ }^{3}$ Strong-base for U is sequence $\left\langle A_{\alpha} \mid \alpha<\theta\right\rangle$ which is \subseteq^{*}-decreasing, each $A_{\alpha} \in U$, and for every $B \in U$, exists $\alpha<\theta$ such that $A_{\alpha} \subseteq^{*} B$.

[^3]: ${ }^{4}$ A filter over a cardinal κ is uniform iff it contains the Fréchet filter: $\{X \subseteq \kappa||\kappa \backslash X|<$ $\kappa\}$.

[^4]: ${ }^{5}$ Where $\operatorname{ro}(\mathbb{Q})$ is the complete boolean algebra of regular open cuts.

