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Abstract. We obtain a small ultrafilter number at ℵω1 . Moreover,
we develop a version of the overlapping strong extender forcing with
collapses which can keep the top cardinal κ inaccessible. We apply this
forcing to construct a model where κ is the least inaccessible and Vκ

is a model of GCH at regulars, failures of SCH at singulars, and the
ultrafilter numbers at all singulars are small.

1. introduction

Some of the most basic mathematical theorems rely on the possibility to
distinguish between small and large sets. For example, the Lebesgue criteria
for Riemann integratability states that a bounded function f : [a, b] → R is
Riemann integrable, if and only if the set of its discontinuity points is small,
which in this case means of Lebesgue measure zero. Smallness has many
other interpretations: small cardinalities in set theory, nowhere dense sets
in topology, probability zero events in probability theory, or polynomial and
linear functions in computability theory. An abstract approach to define a
notion of largeness for the subsets of a given set X is filters, which is simply
a set F ⊆ P (X) that contains all the large subsets of X. Formally speaking,
we require the following 3 axioms which say that F is a filter over X:

(1) X ∈ F , ∅ /∈ F . (non empty and non-degenerate)
(2) A,B ∈ F ⇒ A ∩B ∈ F . (closed under intersection)
(3) (A ∈ F ∧A ⊆ B) ⇒ B ∈ F . (upward closed to inclusion)

For a fixed filter F , we may consider small sets as the sets whose com-
plements are in F . Note that for many filters, there are sets X which are
neither small, nor large, namely X /∈ F and also Xc /∈ F e.g. in probability,
there are sets X such that 0 < P(X) < 1 and thus are neither small (i.e.
P(X) = 0), nor large (i.e. P(X) = 1).

Ultrafilters are those filters which do determine that every set is either
large or small. Namely, a filter U over X is an ultrafilter if for every B ⊆ X
either B ∈ U or X \B ∈ U . Most of the non-trivial examples of ultrafilters
involve the Axiom of choice and are thus highly non-constructive. However,
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they have been proven to be useful in many areas such as Analysis, Topol-
ogy, Model theory, Algebra, and combinatorics. For example, Nonstandard
analysis [13] is an alternative approach to study analysis and more sophis-
ticated mathematics. The ϵ-δ definitions in analysis can be replaced by
using more concrete objects, so-called infinitesimals, in a nonstandard uni-
verse of nonstandard reals, which contain all reals. One of the constructions
of a nonstandard universe is through an ultraproduct construction, which
requires a non-trivial ultrafilter over N. there is a more concrete and the
Stone-Čech compactification in topology [21],[3]. Studying the combinato-
rial nature of ultrafilters is important to obtain a stronger understanding of
those applications, but are not limited to that and can be used in several
results in infinitary combinatorics (see for example [15]). One specific com-
binatorial property we are interested in this paper is the ultrafilter number,
which has been extensively studied in recent years, as we will see in the next
subsection:

1.1. The ultrafilter number. The ultrafilter number for a cardinal num-
ber κ, determines how many sets one needs in order to generate an ultrafilter
on κ. Let us be more precise here:

Definition 1.1. Let U be an ultrafilter over a cardinal κ, define:

(1) a subset of an ultrafilter U , B ⊆ U is called a base if ∀A ∈ U there
is B ∈ B such that B ⊆∗ A1.

(2) The characteristics of U is Ch(U) := min(|B| | B is a base forU)
(3) The ultrafilter number uκ := min(Ch(U) | U is a uniform ultrafilter over κ)2

The number uκ is a generalized characteristic cardinal of the continuum
as it is known that for every κ, κ+ ≤ uκ ≤ 2κ. As with other characteristic
cardinals, the basic question is whether they can be (namely, is it consistent
to) separated from the continuum. Kunen (Exercise (A10) of Chapter XIII
in [16]) proved that using a suitable iteration (of Mathias forcing) over a
model of CH, one can force a model with 2ℵ0 > uℵ0 . Kunen’s method does
not generalize to greater cardinals, and raised whether it is consistent to
have uℵ1 < 2ℵ1 . This question is open and has been so since the 70s.

Assuming stronger assumptions on the cardinal κ, which are known as
large cardinal assumptions, Gitik and Shelah [12, Lemma 1.9] forced the exis-
tence of a cardinal ℵ0 < κ with 2κ > uκ. This cardinal κ is extremely greater
than ω1 and do not lay near the area where other mathematics occurs. The
large cardinal assumption was then improved by Brooke-Taylor, Fischer,
Friedman, and Montoya [2] to a supercompact cardinal, where they used a
similar iteration to the one Kunen used, but still considered an extremely
large cardinal. Recently, a remarkable result of Raghavan and Shelah [20]
established the consistency of uκ < 2κ for κ = 2ℵ0 where they started with a
much smaller large cardinal- a measurable cardinal. However, in their model

1The order A ⊆∗ B is defined by A \B is bounded in κ.
2An ultrafilter U over κ is uniform if for every X ∈ U , |X| = κ.
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2ℵ0 is still very large. They also obtained the result on the much smaller
cardinal ℵω+1 but starting again from a supercompact cardinals.

While all the work mentioned above concerns the ultrafilter number for
regular cardinals, a different line of research about the ultrafilter number
on singular cardinals has also been studied in the last decade. The first
results in this direction uses PCF theory and is due to Shelah and Garti [9,
Theorem 1.4]:

Theorem 1.2. Suppose that κ = cf(λ) < λ are two cardinals, λ is strong
limit, and ⟨λi | i < κ⟩ is an unbounded and increasing sequence in λ such
that:

(1) There is a uniform ultrafilter E over κ.
(2) Each Ui is a uniform ultrafilter over λi carrying a strong-base ⟨Ai,β |

β < θi⟩. 3 Then there is a uniform ultrafilter U over λ such that
Ch(U) ≤ tcf(

∏
i<κ λi, <E) · tcf(

∏
i<κ θi, <E)

This theorem provides a way to construct a uniform ultrafilter with a
small base, and one can apply in is various models where these tcf ’s have
known values. For example, for any fixed κ, Garti and Shelah [8] have a
model where 2λ > λ+, a sequence of measurables ⟨λi | i < κ⟩, 2λi = λ+

i and

tcf(
∏

i<κ λi, <E) = tcf(
∏

i<κ λ
+
i , <E) = λ+. The measures Ui can be any

normal ultrafilter over λi, then by normality and 2λi = λ+
i when can get

θi = λ+
i . So they obtained the following:

Theorem 1.3. Suppose that there is a supercompact cardinal, then there is
a model with a singular cardinal λ such that uλ = λ+ and 2λ > λ+.

Then Garti, Magidor and Shelah [7] used the single extender-based forcing
to get the following:

Theorem 1.4. Suppose that κ < λ are such that κ is strong and λ > κ is a
limit of measurable cardinals ⟨λi | i < θ⟩. Then in the generic extension by
the extender based forcing with E being a (κ, λ)-extender, for every i < θ,
there are ω-sequences of measurables ⟨λi,n | n < ω⟩ (corresponding to the
measure Uλi

) in κ such that tcf(
∏

n<ω λi,n/Jbd) = λ+
i . 2κ ≥ λ and GCH<κ.

In particular, there are ultrafilters Ui over κ such that Ch(Ui) = λ+
i .

From the previous model we can put collapses and obtain other values of
Ch(U).

It is natural to use Magidor-Radin extender-based forcing of Merimovich
[18] to push these results to uncountable cofinalities. Indeed, Cummings
and Morgan [5] manneged to obtain it and proved the following:

Theorem 1.5. Let ρ < κ < λ where ρ is regular and uncountable, λ is
the least inaccessible limit of measurable cardinals greater than κ, and there
is a Mitchell increasing sequence ⟨Ei | i < ρ⟩ such that each extender Ei

3Strong-base for U is sequence ⟨Aα | α < θ⟩ which is ⊆∗-decreasing, each Aα ∈ U , and
for every B ∈ U , exists α < θ such that Aα ⊆∗ B.
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witnesses that κ is λ-strong and is such that κUlt(V,Ei) ⊆ Ult(V,Ei). Then
there is a cardinal-preserving generic extension in which cf(κ) = ρ, 2κ = λ,
and Spχ(κ) is unbounded in λ.

Finally, Gitik Shelah and Garti [6], brought everything down to ℵω and
got the result for ℵω. In the first part of this paper we will use the forcing [14]
to tackle the question of separating uℵω1

and 2ℵω1 and prove the following:

Theorem A. Suppose κ is a singular cardinal, ρ < κ is regular and ⟨κi | i <
ρ⟩ is a sequence of strong cardinals with limit κ and ρ < κ0. Suppose that

E⃗ = ⟨Ei | i < ρ⟩ is a Mitchell increasing sequence of extenders witnessing
that κi is κ++-strong, then after forcing PE⃗ we obtain a model where κ =
ℵω1, 2

κ > ℵω1+1 and uκ = ℵω1+1.

The proof generalizes ideas similar to the one from [6], but also applies
for the countable case. Also, we provide some missing details in the proof
from [6].

1.2. Overlapping Strong Extenders of long length. As mentioned in
the previous subsection, many results, both about the ultrafilter number and
others, are known to hold at extremely large cardinals. One important task
is to verify whether this results hold at more down to earth cardinals. This
problem is a typical problem when we force with so-called Prikry-type forc-
ings. The idea is to start with a large cardinal and to force a model where we
destroy some properties of this large cardinal while other properties survive
the forcing. This leads to solutions of many important open problems, such
as the Singular Cardinal Hypothesis [17]. This type of forcing is in exten-
sive use in modern set theory. The major disadvantage of such a forcing is
that even though the initial large cardinal loses its large cardinal property,
it might still be located in a very high spot of the mathematical universe,
namely above many other large cardinals, and therefore, irrelevant to solve
problems in the lower cardinals. Fortunately, a mechanism of crossing the
gaps between the lower cardinals and the higher ones is also available in
some situations. This is the so-called Prikry-type forcing with interleaving
collapses, which both preserves the large cardinal properties and brings ev-
erything down to much lower cardinal (see for example, Chapter 4 of[10]).
While Prikry-type forcings usually singularize a cardinal, some variations of
the Radin forcing [19] and of Gitik’s overlapping extender-based forcing [1]
can keep κ regular. In Section 3, we show how to incorporate collapses with
these kinds of forcings and develop the Long Overlapping strong extender
with collapses, which is in the spirit of the one from [14] or prior to that
of Gitik’s overlapping extender based forcing with collapses. The main in-
novation of our forcing is that it can keep κ inaccessible, and by involving
collapses, turn κ into the first inaccessible. This fact is relevant for those
problems in set theory seeking for consistency results at the first inaccessi-
ble cardinals, and we believe that this forcing might be useful to tackle such
problems. For example, we apply this forcing to obtain the following model:
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Theorem B. Let κ be the least inaccessible cardinal such that there is a
Mitchell increasing sequence ⟨Ei | i < κ⟩ witnessing that each κi is κ++-
strong. Then it is consistent that κ is the least inaccessible cardinal, GCH
holds for every regular below κ, SCH fails for every singular below κ and for
λ < κ singular, uλ < 2λ.

Convention: p ≥ q means p is stronger than q. For functions f and g with
dom(g) ⊆ dom(f), define f ⊕ g (f overwritten by g) as the function h with
dom(h) = dom(f), h(x) = g(x) for x ∈ dom(g) and h(x) = f(x) otherwise.

2. A small ultrafilter number at ℵω1

We start with a basic definition.

Definition 2.1. Let κ be an infinite cardinal and U is a uniform4 ultrafilter
on κ.

(1) A base for U is a collection B ⊆ U such that for every B ∈ U , there
is A ∈ B such that A ⊆∗ B, namely, A \B is a bounded subset of κ.

(2) Ch(U) := min{|B | B ⊆ U is a base for U}
(3) The ultrafilter number of κ, denoted by uκ, is

min{Ch(U) | U is a uniform ultrafilter}.

By Claim 1.2 of [9], for any infinite κ, κ < uκ ≤ 2κ and if 2κ = κ+, then
uκ = 2κ. It is possible to have Ch(U) being singular [11]. We say that
⟨W,≤W ⟩ is a pre-order if it is reflexive and transitive. The terms “dense”
and “open” take their usual meanings. Let us use some of the definitions of
Garti, Gitik, and Shelah from [6]:

Definition 2.2. Let ⟨Wi | i < λ⟩ be a sequence of pre-orders and F be a
filter on λ. A Sullam in (

∏
i<λWi, F ) is a sequence ⟨fα | α < µ⟩ ⊆

∏
i<λWi

such that:

(1) ⟨fα | α < µ⟩ are increasing modF , namely, if α < β < µ, then

{i < λ | fα(i) <Wi fβ(i)} ∈ F.

(2) for any list ⟨Vi | i < λ⟩ such that Vi ⊆ Wi is open dense, there is
α < µ such that

{i < λ | fα(i) ∈ Vi} ∈ F.

We only focus on the dual filters of the bounded ideal Jbd = {X ⊆ λ |
|X| < λ}. The collection of positive sets F+ has the usual meaning, namely,
if IF = {λ \X | X ∈ F} is the dual ideal, then F+ := {X ⊆ λ | X ̸∈ IF }.

Let F be a filter over λ and W be a pre-order. A function g : W → F+

is said to be order preserving when for every p ≤Wi q, g(q) ⊆ g(p). We say
that g is deciding if for every A ⊆ λ and any w ∈ W , there is w ≤W u such
that g(u) ⊆ A or g(u) ⊆ λ \A.

4A filter over a cardinal κ is uniform iff it contains the Fréchet filter: {X ⊆ κ | |κ\X| <
κ}.
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Definition 2.3. Given a singular cardinal λ = cf(µ) < µ, a nice system S
consists of the following data:

(1) A cofinal sequence ⟨λi | i < λ⟩ in µ consisting of regular cardinals.
(2) A sequence ⟨Di | i < λ⟩ such that each Di is a uniform filter over λi.
(3) A sequence ⟨Wi | i < λ⟩ of pre-orders.
(4) Functions gi : Wi → D+

i which are order-preserving and deciding.

The following is a slight variation of [6, Theorem 1.3]:

Theorem 2.4. Suppose that λ = cf(µ) < µ, S is a nice system and D is
a uniform ultrafilter over λ. Suppose that θ ∈ (µ, 2µ] is a regular cardinal
such that:

(1) Ch(D) ≤ θ.
(2) there is a Sullam ⟨fβ | β < θ⟩ in (

∏
i<λWi, D).

Then there is a uniform ultrafilter U over µ such that Ch(U) ≤ θ.

Proof. The definition of U is as follows, for X ⊆ µ:

X ∈ U ⇐⇒ ∃α < θ{i < λ | gi(fα(i)) ⊆Di X ∩ λi} ∈ D,

where ⊆Di means ⊆∗ with respect to the filter Di.

Claim 2.5. U is a uniform ultrafilter over µ.

Proof of claim. First, note that since rng(gi) = D+
i , gi(fα(i)) ̸= ∅(modDi),

hence if X = ∅, then {i < λ | gi(fα(i)) ⊆Di X ∩ λi} = ∅. Since D is a
uniform filter, by the definition of U , ∅ /∈ U . A similar argument shows that
µ ∈ U . If X1, X2 ∈ U , then there are α1, α2 < θ such that

El := {i < λ | gi(fαl
(i)) ⊆Di Xl ∩ λi} ∈ D, for l = 1, 2.

Suppose without loss of generality that α1 ≤ α2. Then by the definition of
Sullam, the set

E3 := {i < λ | fα1(i) <Wi fα2(i)} ∈ D.

Since all the gi’s are order-preserving, for every i ∈ E3, gi(fα2(i)) ⊆ gi(fα1(i)).
It follows that if i ∈ E1 ∩ E2 ∩ E3 ∈ D, we have that

(1) gi(fα2(i)) ⊆Di X2 ∩ λi (since i ∈ E2).
(2) gi(fα2(i)) ⊆ gi(fα1(i)) ⊆Di X1 ∩ λi (Since i ∈ E3 and i ∈ E1, resp.).

It follows that gi(fα2(i)) ⊆Di X1 ∩X2 ∩ λi. By the definition of U , we con-
clude that X1∩X2 ∈ U . Showing that U is closed upward is straightforward.
To see it is an ultrafilter, let X ⊆ µ. For every i < λ, consider the set

Vi = {q ∈ Wi | (gi(q) ⊆ X ∩ λi) ∨ (gi(q) ⊆ λi \X)},
then Vi is dense. Since gi is order-preserving, Vi is also open. By the
definition of Sullam, there is α < θ such that

F0 := {i < λ | fα(i) ∈ Vi} ∈ D.

This means that for each i ∈ F0, gi(fα(i)) ⊆ X ∩ λi or gi(fα(i)) ⊆ λi \X.
Let us define a variable ci which in the first case above ci = 0 and in the



A SMALL ULTRAFILTER NUMBER AT EVERY SINGULAR CARDINAL 7

second ci = 1. Since D is an ultrafilter, there is a unique c∗ ∈ {0, 1} such
that

F1 := {i ∈ F0 | ci = c∗} ∈ D.

Suppose without loss of generality that c∗ = 0. We have that for i ∈ F1,
gi(fα(i)) ⊆ X ∩ λi. This implies that X ∈ U . Finally to see that U is
uniform, if X ∈ U , by definition, I = {i < λ | X ∩ λi ∈ D+

i } ∈ D.
Since each Di is uniform, for i ∈ I, |X ∩ λi| = λi and since D is uniform
|X| = |

⋃
i∈I X ∩ λi| = supi∈I λi = µ. This completes the claim. □

To finish the proof, let us construct a base of size at most θ for the
ultrafilter U . Let

(1) ⟨dα | α < θ⟩ be a base for D (Assumption (1) of the theorem).
(2) ⟨fβ | β < θ⟩ be the Sullam (Assumption (2) of the theorem).

Define for every α, β < θ, the set:

Bα,β =
⋃
i∈dα

gi(fβ(i)).

Clearly, each Bα,β is in U . We now check that B = {Bα,β | α, β < θ} ⊆ U
is a base for U . Let X ∈ U , then by the definition, there is β < θ such that

H0 := {i < λ | gi(fβ(i)) ⊆Di X ∩ λi} ∈ D.

This implies that for each i ∈ H0, there is a set Bi ∈ Di such that gi(fβ(i))∩
Bi ⊆ X ∩ λi. For every i < λ, define

Vi := {q ∈ Wi | gi(q) ⊆ Bi ∨ gi(q) ⊆ λi \Bi}.

This is open dense, hence by the definition of Sullam, there is β′ > β such
that

H1 = {i < λ | fβ′(i) ∈ Vi} ∈ D.

Note that if i ∈ H1, then since Bi ∈ Di, we have gi(fβ′(i)) ⊆ Bi. Since
β < β′, then by the definition of Sullam,

H2 := {i < λ | fβ(i) <Wi fβ′(i)} ∈ D.

Find α < θ such that dα ⊆∗ H0 ∩ H1 ∩ H2, and let ζ < λ be such that
dα \ζ ⊆ H0∩H1∩H2. To see that Bα,β′ \λζ ⊆ X, note that if ν ∈ Bα,β′ \λζ ,
then by the definition of Bα,β′ , there is i ∈ dα \ ζ such that ν ∈ gi(fβ′(i)).
Thus, i ∈ H0 ∩H1 ∩H2 and therefore,

gi(fβ′(i)) ⊆ gi(fβ(i)) ∩Bi ⊆ X ∩ λi.

This concludes that ν ∈ X. □
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2.1. A model where uℵω1
< 2ℵω1 . Now let us turn to force the assumptions

of Theorem 2.4 for µ = ℵω1 with θ = ℵω1+1 with 2ℵω1 > ℵω1+1. Our forcing
will be the one from [14], which requires the following assumptions in the
ground model V :

• GCH.
• a sequence ⟨κi | i < ω1⟩ of strong cardinals with limit κ.
• For each κi, Ei is a (κi, κ

++)-extender such that jEi : V → MEi

is the extender ultrapower, MEi computes cardinals correctly up to
and including κ++, Mκi

Ei
⊆ MEi .

• For each i, we have si : κi → κi the function representing κ in jEi ,
namely jEi(si)(κi) = κ. We can assume that si(ν) > max{ν, κ̄i} for
every ν (see Notation 2.6).

• For each i1 < i2 < ω1, jEi2
, there is a function ti1i2 : κi2 → Vκi2

such

that jEi2
(ti1i2)(κi2) = Ei1 so that Ei1 ∈ MEi2

.
• □κ holds

The last requirement about the square will help us build a Sullam in Theo-
rem 2.17. The assumption can be made possible by working in some canon-
ical model for a Woodin cardinal.

Notation 2.6. for every β ≤ ω1 denote by κ̄β = supα<β κα and κ̄0 = ω. In
particular if β is successor then κ̄β = κβ−1 and if β is limit then κ̄β < κβ.
In particular, κ = κ̄ω1

For the convenience of the reader, we include here Merimovich notations
for which we will use:

• For i < ω1, an i-domain is a set d ∈ [κ++]κi such that κi + 1 ⊆ d (a
set which can be the domain of the Cohen part of a condition in the
extender-based forcing).

• Define mci(d)=(jEi ↾ d)
−1 = {⟨jEi(x), x⟩ | x ∈ d}. (This is the gen-

erator of a measure used by Merimovich in his version of Extender-
based forcings).

• Denote the measure generated by mci(d), by Ei(d), namely X ∈
Ei(d) ⇐⇒ mci(d) ∈ jEi(X).

A typical element in a measure one set of Ei(d) is a sequence which provide
a “layer” of points for the continuation of the Prikry sequences appearing
in the domain of a given condition. The following definition summarizes the
properties we need from such sequences:

Definition 2.7. An (i, d)-object is a function µ such that:

(1) κi ∈ dom(µ) ⊆ d and rng(µ) ⊆ si(µ(κi))
++ ⊆ κi.

(Since dom(mci(d)) = j′′Ei
d, then jEi(κi) ∈ dom(mci(d)) ⊆ jEi(d).

Also rng(mci(d)) = d ⊆ κ++ ⊆= jEi(si)(κi)).
(2) | dom(µ)| = µ(κi) < κi and µ(κi) is inaccessible.

(since |dom(mci(d))| = |d| = κi < jEi(κi)).
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(3) dom(µ) ∩ κi = µ(κi) and µ ↾ µ(κi) = id.
(Since κi ⊆ d, then dom(mci(d)) ∩ jEi(κi) = j′′Ei

d ∩ jEi(κi) = κi.
For the second part, note that α < κi, jEi(α) = α and therefore
mci(d)(α) = α.)

(4) µ is order preserving.
(Since jEi is order-preserving.)

The set OBi(d) is the set of (i, d)-objects, and clearly OBi(d) ∈ Ei(d).

We can omit the ‘i’ from the “(i, d)-object” and form OBi(d) since i is
uniquely determined by d (recall that |d| = κi).

Definition 2.8. If d ⊆ d′ are i-domains let πd′,d : OB(d′) → OB(d) be the
restriction function πd′,d(µ) = µ ↾ d (which is equal to µ ↾ dom(µ) ∩ d).

Clearly, the generators and the measures are projected using the restric-
tion map, namely jEi(πd′,d)(mci(d

′)) = mci(d) and (πd′,d)∗(Ei(d
′)) = Ei(d)

where (πd′,d)∗ is the natural map induced by πd′,d.
Here are two relevant combinatorial lemmas regarding such measures:

Proposition 2.9. Let 0 ≤ i1 < i2 < ... < in < ω1 and F :
∏n

k=0Aik → X
is any function such that dik is ik-domain, Aik ∈ Eik(dik) and |X| < κi1.
Then there is Bik ⊆ Aik such that Bik ∈ Eik(dik) such that F ↾

∏n
k=0Bik is

constant.

Proposition 2.10. (The bound for the number of objects with the same
projection to the normal measure) For each i < ω1 and an i-domain d, there
is a set Ai(d) such that Ai(d) ∈ Ei(d), and for each ν < κi, the size of
{µ ∈ Ai(d) | µ(κi) = ν} is at most si(ν)

++.

We keep the notation of Ai(d). Finally, we denote the normal measure
below Ei by Ei(κi) which is the set of all X ⊆ κi such that κi ∈ jEi(X).

If A ∈ Ei(d), the projection to normal is denoted by A(κi) and is define as

A(κi) = {µ(κi) | µ ∈ A} ∈ Ei(κi).

Definition 2.11. A condition in PE⃗ is a sequence p = ⟨pi | i < ω1⟩ such
that there is a finite set Supp(p) ∈ [ω1]

<ω, and we have that:

pi =

{
⟨fi, h0i , h1i , h2i ⟩ i ∈ Supp(p)

⟨fi, Ai, H
0
i , H

1
i , H

2
i ⟩ i /∈ Supp(p)

Such that for every every i1 < i2 < ω1, dom(fi1) ⊆ dom(fi2). Denote
Supp(p) = {i1 < i2 < ... < ir} and i0 = 0, then for every i < ω1:

κ̄i < κ̄+2
i < fi(κi) < si(fi(κi)) < si(fi(κi))

+ < si(fi(κi))
++ < κi,

fi(κi) is inaccessible, and we require that:

(1) If there is k < r such that i ∈ [ik, ik+1) fi is a partial function from
sik+1

(fik+1
(κik+1

))++ to κi such that κi +1 ⊆ dom(fi) and |fi| = κi.
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(2) If i ∈ [ir, ω1), then fi is a partial function from κ++ to κi such that
dom(fi) is an i-domain. In this case, abusively write the forcing in
which fi lives as Add(κ

+
i , κ

++).

(3) for i ∈ Supp(p), h0i ∈ Col(κ̄+i , < fi(κi)), h
1
i ∈ Col(fi(κi), si(fi(κi))

+),
h2i ∈ Col(si(fi(κi))

+3, < κi).
(4) For i /∈ Supp(p):

(a) Ai ∈ Ei(dom(fi)).
(b) dom(H0

i ) = dom(H1
i ) = Ai and dom(H2

i ) = Ai(κi).
(c) H0

i (µ) ∈ Col(κ̄+i , < µ(κi)), H
1
i (µ) ∈ Col(µ(κi), si(µ(κi))

+) and
H2

i (µ(κi)) ∈ Col(si(µ(κi))
+3, < κi).

If p is a condition, we usually represent each component of p by putting
the superscript p to that component. For example, fi in p is denoted by fp

i .
We also write dom(fp

i ) as d
p
i .

Definition 2.12. The direct order is defined by p ≤∗ q if Supp(p) =
Supp(q), for every i, fp

i ⊆ f q
i and

(1) if i ∈ Supp(p), then for hr,pi ≤ hr,qi for r = 0, 1, 2.
(2) if i /∈ Supp(p), πdom(fq

i ),dom(fp
i )
[Aq

i ] ⊆ Ap
i . H

r,p
i (πdom(fq

i ),dom(fp
i )
(µ)) ≤

Hr,q
i (µ) for every µ and r = 0, 1, and H2,p

i (γ) ≤ Hr,q
i (γ) for every γ.

Remark 2.13. The collection of µ which is addable to p is of measure-one.

Definition 2.14. Let i /∈ Supp(p). µ ∈ Ap
i is addable to p if:

(1) κ̄i < µ(κi) is inaccessible.
(2) ∪α<i dom(fα) ⊆ dom(µ) and µ ↾ κ̄i = id.

(3) For every β ∈ (max(Supp(p)∩α), α), {ν◦µ−1 | ν ∈ Ap
β} ∈ tβα(µ(κα))(µ[dom(fβ)]).

Definition 2.15. Let i /∈ Supp(p), i∗ = max(Supp(p) ∩ i) where max(∅) =
−1, and µ ∈ Ap

i , define p + µ as the condition q such that Supp(q) =
Supp(p) ∪ {i}, and

(1) For r ∈ [0, i∗) ∪ (i, ω1), pr = qr.

(2) For r = i, f q
i = fp

i ⊕ µ, h0,qi = H0,p
i (µ), h1,qi = H1,p

i (µ) and h2,qi =

H2,p
i (µ(κi)).

(3) For r ∈ [i∗, i), j ≥ 0, f q
r = fp

r ◦µ−1 and if r > i∗, then Aq
r = Ap

r ◦µ−1,

Hj,q
r (ν) = Hj,q

r (ν ◦ µ) for j = 0, 1, and H2,q
j = H2,p

j .

Define p + ⟨µ1, · · · , µn⟩ recursively by p + (⟨µ1, · · · , µn−1⟩) + µn. Define
an ordering in PE⃗ by p ≤ q if p + µ⃗ ≤∗ q for some µ⃗ (µ⃗ could be empty).
Sometimes, we interact an object with the part of the condition that appears
before the occurrence of the object, for example, we have a part p ∈ PE⃗ ,

d ⊇ dpi , and µ ∈ OBi(d), then p ↾ i is considered as an element in PE⃗↾i,

and if t ∈ PE⃗↾i, we denote tµ a tuple obtained by “squishing t by µ, namely

we operate as in Definition 2.15 (1) for r < i∗ and (3). Note that tµ ∈
P⟨tβi (µ(κi))|β<i⟩.

Proposition 2.16 (Properties). (1) PE⃗ is κ++-c.c.
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(2) For every p, and for every i ∈ Supp(p) the forcing above p can be
factored to a product

P<i × Col(si(fi(κi)
+3, < κi)× P>i

Where (P>i,≤∗) is a κ+i -closed forcing and |P<i| ≤ si(fi(κi))
+2 < κα

(3) PE⃗ has the Prikry property and the strong Prikry property (the strong
Prikry property says that for every p and a dense open set D, there

is p∗ ≥∗ p and a ∈ [ω1]
<ω such that for every µ⃗ ∈

∏
i∈aA

p∗

i , p∗+ µ⃗ ∈
D).

(4) Cardinal’s structure: In the extension, the κi’s are preserved and
between κi and κi+1 we preserve only

κ+i < fi+1(κi+1) < si+1(fi+1(κi+1))
++ < si+1(fi+1(κi+1))

+++

In particular every i ≤ ω1, κ̄i is preserved. κ+ is preserved by the
strong Prikry property, and above κ++ we use the chain condition.

(5) If α < ω1 is limit, in the extension, κ̄α = ℵα, 2ℵα = ℵα+3, κ be-
comes ℵω1 and 2ℵω1 = ℵω1+2. (The mismatch for the cardinals of
the powersets of singular cardinals is not a typo. In Section 3 we will
elaborate a slight modification so that in the extension, the cardinal
behavior on singular cardinals will align uniformly).

(6) □ℵω1
holds. (This is simply because we assume □κ in the ground

model, κ and κ+ are preserved in the extension, and κ becomes ℵω1).

Theorem 2.17. After forcing with PE⃗, there is a nice system satisfying the
assumption of Theorem 2.4 with θ = ℵω1+1.

Proof. The proof is divided into two stages. The first stage is to build a nice
system. The second stage is to find a uniform ultrafilter of small base and
a Sullam.

Stage 1: We fix any uniform ultrafilter D over ω1 in the extension. Let
us use the sequence λi = κi which is regular in the extension. Note that
κi was measurable in V , we fix a normal measure D′

i on κi in V . Since
the upper forcing P>i does not add subsets to κi, κi remains measurable
after forcing with P>i with the measure D′

i. Also, by the small cardinal-
ity of P<i, we can lift any ultrapower embedding using a normal ultrafilter
over κi from V P>i to V P>i×P<i . Hence κi remains measurable after forc-
ing with P>i × P<i. The embedding generates a normal measure extending
D′

i, and we still call the measure in the extension D′
i. Clearly, the mea-

surability fo κi is destroyed by forcing Col(si(fi(κi))
+3, < κi). However,

if D′
i ∈ V P>i×P<i =: V1 is a normal ultrafilter over κi, we can follow the

construction in [4, Section 17.1]: Let jD′
i
: V1 → M1 be the usual ultra-

power embedding. Then, jD′
i
(Col(si(fi(κi)))

+3, < κi)) is forcing equivalent

to Col(si(fi(κi)))
+3, < κi) × Q, where Q adds a collapsing function for ev-

ery α ∈ [κi, jD′
i
(κi)) to have cardinality si(fi(κi)))

+3. We call the forcing

Col(si(fi(κi)))
+3, Ii) where Ii = [κi, jD′

i
(κi)). Over V1[G] (which is the

generic extension by PE⃗), let H be Q-generic over V1[G]. and in the model
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V1[G][H] we can lift jD′
i
⊆ j∗ : V1[G] → M1[G ∗H]. Now in V1[G], we define

an extension of D′
i:

Di := {X ⊆ κi | 0Q ⊩Q κi ∈ j∗(X)}
Clearly, Di is uniform. Moreover, in V1[G] the forcing (D+

i ,⊇) is isomorphic
to ro(Q)5. In particular, since Q is a dense subset of ro(Q), there is a
dense embedding gi : Q → D+

i . Let Wi = Q, then gi : Wi → D+
i is order

preserving. To see that it is deciding, let A ⊆ κi and let q ∈ Q. Then
either A ∩ gi(q) ∈ D+

i or (κi \ A) ∩ gi(q) ∈ D+
i . Suppose without loss of

generality that A ∩ π(q) ∈ D+
i . Then by density of Q, there is q′ ≥ q such

that gi(q
′) ⊆ A ∩ gi(q) ⊆ A. So far we have proven that ⟨κi | i < ω1⟩,

⟨Wi | i < ω1⟩, ⟨Di | i < ω1⟩ and ⟨gi | i < ω1⟩ forms a nice system. Note

that Q is the collapse forcing in the sense of V , and Ẇi is decided from any
p with i ∈ Supp(p), i.e. Ẇi = Col(si(ḟi(κi))

+3, Ii).
Stage 2: We now prove requirements (1) − (2) of Theorem 2.4. (1) is

easy, since ℵω1 is singular strong limit, and so 2ℵ1 < ℵω1 , then Ch(D) ≤
|D| < ℵω1+1. For (2) we need the following claim:

Claim 2.18. For every p ∈ P and every sequence ⟨U̇i | i < ω1⟩ such that

p ⊩ U̇i ⊆ Ẇi and U̇i is open dense, there is p ≤∗ p∗ and a function F : Vκ →
Vκ in V such that for every generic G of P, there is a translation FG

i ∈ V [G]

such that FG
i ⊆ Ẇi[G] is open dense and is a subset of U̇i[G].

Proof. Fix p and U̇i for i < ω1. Assume for simplicitiy that p is pure. Build
a ≤∗-increasing sequence ⟨pi | i < ω1⟩ such that for each i, pi+1 ↾ (i+ 1) =
pi ↾ (i+1), and at each limit α,we take pα as a ≤∗-least upper bound of ⟨pβ |
β < α⟩. Let p0 = p. It remains to elaborate the construction at the successor
stages. Let i < ω1 and pi is constructed. Write pii+1 = ⟨f,A,H0, H1, H2⟩.
Let

R∗ = {(g, r⃗) ∈ Add(κ+i+1, κ
++)× PE⃗\(i+2),≤

∗) |
dom(g) is a subset of the domains in the Cohen part of r⃗}.

Let N ≺ Hρ where ρ is a sufficiently large regular cardinal, pi, Ẇi, U̇i,P ∈ N ,
κi+1 +1 ⊆ N , and <κi+1N ⊆ N . Build an R∗-increasing sequence {(fγ , r⃗γ) |
γ < κi+1} above (f, pi \ (i + 2)) such that every initial segment in in N ,
and for every R∗-dense open set D ∈ N , there is γ such that (fγ , r⃗γ) ∈ D.
Let f∗ = ∪γfγ and r⃗ be the ≤∗-least upper bound of ⟨r⃗γ | γ < κi+1⟩. Then
d∗ := dom(f∗) = N ∩ κ++. Let A∗ ∈ Ei(d

∗), A∗ ⊆ Ai(d
∗), and A∗ projects

down to a subset of A. Then A∗ ⊆ N . Fix γ < κi+1. In N , fix γ < κi+1.
for each µ ∈ A∗ with µ(κi+1) = γ, consider qµ = ⟨(pi ↾ (i + 1))µ, (H

0)(µ ↾

dp
i

i ), (H1)(µ ↾ dp
i

i )⟩. Define Dµ,x = {(h, g, r⃗) ∈ Col(si(γ)
+3, < κi) × R∗ |

{(t, h0, h1) ≥ qµ | Either
(1) t⌢⟨g ⊕ µ, h0, h1, h⟩⌢r⃗ ⊩ x ̸∈ Ẇi,

5Where ro(Q) is the complete boolean algebra of regular open cuts.
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(2) or t⌢⟨g ⊕ µ, h0, h1, h⟩⌢r⃗ ⊩ x ∈ Ẇi and the condition decides some

y ≥ x, y ∈ U̇i},
is open dense. Let D′

γ = {(g, r⃗) ∈ R∗ | ∃h(h, g, r⃗) satisfies the strong Prikry
property for every Dµ,x with µ(κi+1) = γ}. Then Dµ,x is open dense and is
in N . The closure of the forcing for Dµ,x is si+1(γ)

+3. Since the number of
such µ is si+1(γ)

++ and a number of such x is κ+i , we have thatD
′
γ is an open

dense set in N . By genericity, (f∗, r⃗∗) ∈ D′
γ with a witness h =: (H2)∗(γ).

Let pi+1 = pi ↾ (i + 1)⌢⟨f∗, A∗, (H0)′, (H1)′, (H2)∗⟩⌢r⃗∗ where for l = 0, 1,
(H l)′ is the natural map induced from H l. For the rest of the proof, we
denote di+1 := dom(f∗) as above.

Take p∗ as the ≤∗-least upper bound for pi. For each (µ, x) with µ ∈
Ap∗

i+1, by the property of Dµ↾di+1,x and the property of pi+1, we have that
for each (µ ↾ di+1, x), there is a set aµ,x := aµ↾di+1,x ∈ [ω1]

<ω witness-

ing the strong Prikry property for p∗, namely for every τ⃗ ∈
∏

β∈aµ,x A
p∗

β ,

((H2)∗(µ(κi+1)), f
p∗

i+1, (p
∗+⟨µ, τ⃗⟩)\(i+2)⟩ ∈ Dµ↾di+1,x. For each τ⃗ ∈

∏
i∈aµ,x

maximal, fix a maximal antichain Bµ,x,τ⃗ ⊆ P⟨tβi+1(µ(κi+1)|β<i+1⟩ × Col(κ+i , <

µ(κi+1)) × Col(µ(κi+1), si+1(µ(κi+1))
+) such that every element in Bµ,x,τ⃗

either satisfies (1) or (2). Define F : Vκ → Vκ as follows: for each µ, x, τ⃗
and r ∈ Bµ,x,τ⃗ , define F (µ, x, τ⃗ , r) = y if (2) holds with the decision y.
Otherwise, the value is 0. For other elements in dom(F ). assign them as 0.

We now interpret F [G] when G is PE⃗-generic containing p∗. For each

x ∈ Wi := Ẇi[G], find a condition s ∈ G above p∗ + ⟨µ, τ⃗⟩ with (s ↾
(i + 1), (h0i+1)

s, (h1i+1)
s) ≥ r for a unique r ∈ Bµ,x,τ⃗ . Let yx = F (µ, x, τ⃗ , r).

Define FG
i = {y | y ≥ yx for some x ∈ Wi}. We see that FG

i is open dense

and is a subset of U̇i[G]. □

From the claim we get that if ⟨Ui | i < ω1⟩ ∈ V [G] is a list of dense open
subsets of ⟨Wi | i < ω1⟩, then there is a function F : Vκ → Vκ ∈ V such
that for every i < ω1, F

G
i ⊆ Ui and FG

i is dense open. Since we have GCH
in V , we can enumerate ⟨gα | α < κ+⟩ all the functions F : Vκ → Vκ and

in V [G], denote Uα,i = (gα)
G
i and U⃗α = ⟨Uα,i | i < ω1⟩. Then the sequence

⟨U⃗α | α < κ+⟩ has the following properties:

(1) Each U⃗α is a sequence of dense open subsets Uα,i ⊆ Wi.
(2) For every sequence ⟨Vi | i < ω1⟩ of dense open subsets of Wi, there

is some α < κ+ such that for every i < ω1, Uα,i ⊆ Vi.

Let us now define a Sullam ⟨fα | α < ℵω1+1⟩ modulo the filter of co-bounded
subsets of ω1 in the generic extension. Fix a □ℵω1

-sequence ⟨Cα | α ∈
lim(ℵω1+1)⟩ such that each Cα has order-type below ℵω1 . Our induction
hypothesis is that for each limit α, if i∗ is the least such that the closure
of Wi∗ is strictly greater than ot(lim(Cα)), the for i ≥ i∗, ⟨fβ(i) | β ∈
lim(Cα)∪{α}⟩ is strictly increasing. f0 is random. Fix fα, let fα+1 be such
that for all i, fα(i) <Wi fα+1(i) and fα+1(i) ∈ Uα,i. Now, assume α is limit.
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If ot(Cα) = ω, then let fα(i) = supβ∈Cα
fβ(i). A straightforward argument

shows that fα is a ≤∗-upper bound of ⟨fβ | β < α⟩. Assume that ot(Cα) > ω.
Let i∗ be the least such that the closure of Wi∗ is greater than ot(lim(Cα)).
We divide further into two subcases. If lim(Cα) is bounded in α, then β∗ =
max(lim(Cα)) exists. This only happens if cf(ot(Cα)) = ω and Cα \ (β∗+1)
has order-type ω. For this case, let i∗∗ ≥ i∗ be such that for i ≥ i∗∗,
⟨fβ(i)⟩⌢⟨fγ(i) | i ∈ Cα \ (β+1)⟩ is strictly increasing. Define fα(i) such that
for i ∈ [i∗, i∗∗), fα(i) = fβ(i), and for i ≥ i∗∗, fα(i) = supγ∈Cα\(β+1) fα(i).

Then fα is a ≤∗ upper bound of ⟨fγ | γ < α⟩ and fα satisfies the induction
hypothesis. We now consider the second subcase, which is the case where
lim(Cα) is unbounded in α. In this case, for i ≥ i∗, ⟨fβ(i) | β ∈ lim(Cα)⟩ is
increasing. Let fα be such that for i ≥ i∗, fα(i) = supβ∈lim(Cα) fβ(i). This
completes the proof of Theorem 2.17.

□

From Theorem 2.4 and Theorem 2.17, we conclude that

Theorem 2.19. Assume GCH, ⟨κα | α < ω1⟩ is an increasing sequence of
cardinals such that by letting κ = supα<ω1

κα,

(1) for each α, κα carries a (κα, κ
++)-extender Eα.

(2) let jα : V → Ult(V,Eα), then Ult(V,Eα) computes cardinals cor-
rectly up to and including κ++.

(3) if β < α, there is tβα such that jα(t
β
α)(κα) = Eβ.

Then, there is a forcing such that in a generic extension, uℵω1
< 2ℵω1 =

ℵω1+2.

Remark 2.20. With the same argument, in the forcing extension from The-
orem 2.19, for any limit ordinal α < ω1 we also get uℵα < 2ℵα .

3. Forcing with a long sequence of overlapping extenders
with collapses

We start with a model of GCH, and a sequence ⟨κi | i < κ⟩, κ =
supα<κ κi. Assumptions in V :

• GCH.
• κ is inaccessible.
• For each κi, Ei is a (κi, κ

++)-extender such that jEi : V → MEi

is the extender ultrapower, MEi computes cardinals correctly up to
and including κ++, Mκi

Ei
⊆ MEi .

• For each i, we have si : κi → κi the function representing κ in jEi ,
namely jEi(si)(κi) = κ. We can assume that si(ν) > max{ν, κ̄i} for
every ν.

• For each i1 < i2 < κ, there is a function ti1i2 : κi2 → Vκi2
such that

jEi2
(ti1i2)(κi2) = Ei1 , and in particular Ei1 ∈ Ult(V,Ei2).

• κ is the least such cardinal.
• For each α < κ limit, □supβ<α

κβ. holds.
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Remark 3.1. Note that for such κ, κ is an inaccessible cardinal and for every
limit α < κ, supi<α κi is singular, otherwise, supi<α κi is also inaccessible,
and hence α = supi<α κi.

Notations:
for every β ≤ κ denote by κ̄β = supα<β κα. In particular if β is successor
then κ̄β = κβ−1 and if β is limit then κ̄β < κβ. Also, κ = κ̄κ. Also note
that for each β, β ≤ κ̄β < κβ.

Merimovich notations:

• For i < κ, an i-domain is a set d ∈ [κ++]κi such that κi + 1 ⊆ d
• Define mci(d)=(jEi ↾ d)−1 = {⟨jEi(x), x⟩ | x ∈ d} (This is the gen-
erator of a measure used by Merimovich in his version of Extender-
based forcings).

• Denote the measure generated by mci(d), by Ei(d), namely X ∈
Ei(d) ⇐⇒ mci(d) ∈ jEi(X).

We define a typical element in a measure one set of Ei(d). It is a sequence
which will provide a “layer” of points for the continuation of the Prikry
sequences appearing in the domain of a given condition. The proof is simply
to reflect the properties of the generator mci(d).

Definition 3.2. An (i, d)-object is a sequence/function µ such that:

(1) κi ∈ dom(µ) ⊆ d, rng(µ) ⊆ si(µ(κi))
++.

(2) |dom(µ)| = µ(κi) < κi and µ(κi) is inaccessible.
(3) dom(µ) ∩ κi = µ(κi) and µ ↾ µ(κi) = id.
(4) µ is order preserving.

The set OBi(d) is the set of (i, d)-objects, and OBi(d) ∈ Ei(d) (see the

arguments in Definition 2.7). If d is clear from the context, and µ is an
(i, d)-object, we denote iµ = i. If µ⃗ = ⟨µ1, · · · , µn⟩ is a sequence of objects,
where iµ1 < · · · < iµn , denote iµ⃗ the ordinal iµn .

We can omit the ‘i’ from the “(i, d)-object” and from OBi(d) since i is
determined by d (recall that |d| = κi).

The projections: At the price of complicating the notations what we
gain is that the projections between the measures of the extender are just
restriction:

Definition 3.3. If d ⊆ d′ are i-domains, let πd′,d : OB(d′) → OB(d) be the
restriction function πd′,d(µ) = µ ↾ d (which is equal to µ ↾ dom(µ) ∩ d).

Clearly the generators and the measures are projected using the restriction
map:

Proposition 3.4. (1) jEi(πd′,d)(mci(d
′)) = mci(d).

(2) (πd′,d)∗(Ei(d
′)) = Ei(d), where (πd′,d)∗ is the natural induced map

from πd′,d.

Proposition 3.5. (The bound for the number of objects with the same pro-
jection to the normal measure) For each i < κ and an i-domain d, there
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is a set Ai(d) such that Ai(d) ∈ Ei(d), and for each ν < κi, the size of
{µ ∈ Ai(d) | µ(κi) = ν} is at most si(ν)

++.

We keep the notation of Ai(d). We also need notations for the normal
measure:

• The normal measure Ei(κi) is the set of all X ⊆ κi such that κi ∈
jEi(X).

• If A ∈ Ei(d) (then recall that κi ∈ d) and the projection to normal is
denoted by A(κi) and is define as A(κi) = {µ(κi) | µ ∈ A} ∈ Ei(κi)

Definition 3.6. P⟨Ei|i<κ⟩ is a sequence p = ⟨pi | i < κ⟩ such that there is a

finite set Supp(p) ∈ [κ]<ω, and we have that:

pi =

{
⟨fi, h0i , h1i ⟩ i ∈ Supp(p)

⟨fi, Ai, H
0
i , H

1
i ⟩ i /∈ Supp(p)

Such that for every i1 < i2 < κ, dom(fi1) ⊆ dom(fi2). Denote Supp(p) =
{i1 < i2 < ... < ir}, then for every i < κ:

κ̄i < κ̄+2
i < fi(κi) < si(fi(κi)) < si(fi(κi))

+ < si(fi(κi))
++ < κi,

and we require that:

(1) If there is k < r such that i ∈ [ik, ik+1) (where i0 = 0), fi is a partial
function from sik+1

(fik+1
(κik+1

))++ to κi such that κi+1 ⊆ dom(fi)
and |fi| = κi.

(2) If i ∈ [ir, κ), then fi is a partial function from κ++ to κi such that
dom(fi) is an i-domain. We will abusively write “fi ∈ Add(κ++, κ+i )”.

(3) for i ∈ Supp(p), h0i ∈ Col(κ̄+2
i , si(fi(κi))

+), h1i ∈ Col(si(fi(κi))
+3, <

κi). (So in the generic extension V [G] we will have: κ̄i < (κ̄+i )
V [G] =

κ̄Vi < (κ̄++
i )V [G] = (si(fi(κi))

++)V < (κ̄+3
i )V [G] = (si(fi(κi))

+3)V <

(κ̄+4
i )V [G] = κi.).

(4) For i /∈ Supp(p):
(a) if there is k < r such that i ∈ [ik, ik+1), thenAi ∈ tiik+1

(fik+1
(κik+1

))(dom(fi)).

(b) if i > ir, then Ai ∈ Ei(dom(fi)).
(c) dom(H0

i ) = Ai and dom(H1
i ) = Ai(κi).

(d) H0
i (µ) ∈ Col(κ̄+i , si(µ(κi))

+) andH2
i (µ(κi)) ∈ Col(si(µ(κi))

+3, <
κi).

If p is a condition, we usually represent each component of p by putting the
superscript p to that component. For example, fi in p is denoted by fp

i . We
also write dom(fp

i ) as d
p
i .

Remark 3.7. The collapses are different from Definition 2.11. There is a flex-
ibility to split collapses to be as in Definition 2.11 or merge some collapses
as in Definition 3.6. The reason is, we want to demonstrate a flexibility on
the cardinal arithmetic on regular cardinals. Ultimately, we will obtain a
ZFC model Vκ where GCH holds at regulars, SCH fails at singulars, small
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ultrafilter numbers everywhere, and κ is the least strongly inaccessible car-
dinal.

The direct extension is clear:

Definition 3.8. The direct order is defined by p ≤∗ q if Supp(p) = Supp(q),
for every i, fp

i ⊆ f q
i and for

(1) If i ∈ Supp(p) then for hr,pi ≤ hr,qi for r = 0, 1.

(2) If i /∈ Supp(p), πdom(fq
i ),dom(fp

i )
[Aq

i ] ⊆ Ap
i . H

0,p
i (x) ≤ H0,q

i (πdom(fq
i ),dom(fp

i )
(x))

for all x, and H1,p
i (γ) ≤ H1,q

i (γ) for all γ.

Definition 3.9. Let i /∈ Supp(p). µ ∈ Ap
i is addable to p if:

(1) κ̄i < µ(κi) is inaccessible.
(2) ∪α<i dom(fα) ⊆ dom(µ) and µ ↾ κ̄i = id.

(3) For every β ∈ (max(Supp(p)∩i), i), {ν◦µ−1 | ν ∈ Ap
β} ∈ tβi (µ(κi))(µ[dom(fβ)]).

Remark 3.10. The collection of µ ∈ Ap
i which is addable to p is of measure-

one, since i ≤ κ̄i < κi.

Definition 3.11. Let i /∈ Supp(p), i∗ = max(Supp(p)∩ i), where max(∅) =
−1 and µ ∈ Ap

i , define p+µ as the condition q such that Supp(q) = Supp(p)∪
{i}, and

(1) For r ∈ [0, i∗) ∪ (i, κ), pr = qr.

(2) For r = i, f q
i = fp

i + µ, h0,qi = H0,p
i (µ), andh1,qi = H1,p

i (µ(κi)).
(3) For r ∈ [i∗, i) with r ≥ 0, f q

r = fp
r ◦µ−1, if r > i∗, then Aq

r = Ap
r◦µ−1.

H0,q
r (ν) = H0,q

r (ν ◦ µ) and H1,q
r = H1,p

r . Finally, if i∗ ≥ 0, then

h0,qi∗
= h0,pi∗

and h1,qi∗
= h1,pi∗

.

Define p+ µ⃗ recursively by p+ ⟨µ1, · · · , µn⟩ = (p+ ⟨µ1, · · · , µn−1⟩) + µn.
We define p ≤ q if p + µ⃗ ≤∗ q for some µ⃗ (µ⃗ could be empty). Sometimes,
we interact an object with the part of the condition that appears before the
occurrence of the object, for example, we have a part p ∈ PE⃗ , d ⊇ dpi , and
µ ∈ OBi(d), then p ↾ i is considered as an element in PE⃗↾i, and if t ∈ PE⃗↾i,

we denote tµ a tuple obtained by “squishing t by µ, namely we operate as
in Definition 3.11 (1) for r < i∗ and (3). Note that tµ ∈ P⟨tβi (µ(κi))|β<i⟩.

The following definition follows from [1].

Definition 3.12. Let p be a condition, n > 0. A (p, n)-fat-tree is a tree T
of height n such that the following hold:

(1) Levelk(T ) is a collection of sequences of objects of length k + 1.
(2) Level0(T ) ∈ Ei(d

p
i ) for some i.

(3) If µ⃗ = ⟨µ1, · · · , µk⟩ ∈ T and k < n−1, then there is i > iµ⃗ (the defini-
tion of iµ⃗ is as in Definition 3.2) such that SuccT (µ⃗) ∈ Ei(dom(fp

i )).

We say that T is fully compatible with p if for every non-maximal µ⃗ ∈ T ,
SuccT (µ⃗) = Ap

iµ⃗
.

The following two lemmas are easy.
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Lemma 3.13. Let p ∈ PE⃗ and T be a (p, n)-fat-tree.

(1) If T is fully compatible with p, then the collection {p+ µ⃗ | µ⃗ ∈ T is
maximal} is predense above p.

(2) There is p∗ ≥∗ p and a (p∗, n)-fat tree T ∗ with T ∗ is a subtree of T
of the same height such that T ∗ of the same height, and T ∗ is fully
compatible with p∗.

Lemma 3.14. Let T be a (p, n)-fat tree and F : {µ⃗ ∈ T | µ⃗ is maximal} → γ,
γ < κi where Level0(T ) ∈ Ei(d) for some d. Then there is a fat subtree
T ′ ⊆ T of the same height such that F ↾ {µ⃗ ∈ T ′ | µ⃗ is maximal} is
constant.

Lemma 3.15 (The integration lemma [14]). Let p be a condition i ̸∈ Supp(p),
d∗ ⊇ dpi , A

∗ ↾ dpi ⊆ Ap
i . Suppose that for each µ ∈ A∗, lett(µ) ≥∗ (p ↾ i)µ and

h0(µ) ≥ (H0
i )

p(µ ↾ dpi ). Then there is p∗ ≥∗ p such that for each τ ∈ Ap∗

i

with µ = τ ↾ d∗, (p∗ ↾ i)τ = t(µ) and (H0
i )

p∗(τ) = h0(µ).

Theorem 3.16 (The strong Prikry property). Let D be a dense open subset
of PE⃗ and p be a condition. Then there is a direct extension p∗ ≥∗ p and
a (p∗, n)-fat-tree T , for some n, which is fully compatible with p∗ such that
for every maximal µ⃗ ∈ T , p∗ + µ⃗ ∈ D.

Remark 3.17. The proof of the strong Prikry property requires an induction
of the length of the sequence of extenders. The proof where the sequence
has short length was shown in [14]. The proofs for the forcings from longer
sequences of extenders where the lengths are below κ are essentially the
same as the proof of Theorem 3.18. We shall only show the strong Prikry
property for PE⃗ while we apply the Prikry property of the forcings where
the lengths of the sequences of extenders are below κ implicitly.

Proof of Theorem 3.16. Let p be a condition and D be a dense open set.
If there is p∗ ≥∗ p such that p∗ ∈ D, then the proof is done. Suppose
it is not the case. For simplicity, assume p is pure. The plan is to build
⟨pn | 0 < n < ω⟩ such that for each n, either every direct extension of an
n-step extension of pn is not in D, or there is a (pn, n)-fat-tree Tn fully
compatible with pn such that every n-step extension of pn using a maximal
node in T is in D.

Stage 1: step A We build a ≤∗-increasing sequence ⟨qi | i < κ⟩ such that

(1) q0 ≥∗ p.

(2) for i′ < i, qii′ = qi
′
i′ .

In the end, we can take q∗ such that q∗i = qii. Then q∗ ≥∗ p. q∗ will satisfy

Claim 3.18. Fix i < κ. Assume qi
′
is constructed for i′ < i. Let q′ be such

that for all j, q′j is the weakest “ ≤∗ ”-upper bound bound of {qi′j | i′ < i},
namely we take the union of Cohen functions, intersect the measure-one sets,
and their functions whose outputs are collapses, we take the pointwise-lower
bound. Note that for i′ < i, q′i′ = qi

′
i′ . Clearly, q

′ is a ≤∗-lower bound of

{qi′ | i′ < i}. Write q′i = ⟨f,A,H0, H1⟩. Define
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R∗
i = {(g, r) | g ∈ Add(κ++, κ+i ), r ∈ (P⟨Eβ |β>i⟩,≤∗), and dom(g) is a

subset of the domains of Cohen parts in r}

Let N ≺ Hθ for some sufficiently large θ, <κiN ⊆ N , κi, q
′,P,R∗

i , D ∈ N ,
|N | = κi. Enumerate dense open subsets of R∗

i in N as ⟨Dα | α < κi⟩ such
that every proper initial segment is in N . Build an R∗

i -increasing sequence
⟨(fα, rα) | α < κ⟩ above (f, q′ \ (i+1)) such that (fα, rα) ∈ Dα for all α. Let
f∗ = ∪α<κifα and r∗ be the minimal ≤∗-upper bound of ⟨rα | α < κ⟩. Then
(f∗, r∗) is (N,R∗

i )-generic in a strong sense: for D′ ∈ N open dense subset
of R∗

i , there is (f ′, r′) ∈ D′ such that (f∗, r∗) ≥ (f ′, r′) ≥ (f, q′ \ (i + 1)).
Note that d∗ := dom(f∗) = N ∩ κ++. Let A∗ ∈ Ei(d

∗), A∗ ⊆ Ai(d
∗)

(Ai(d
∗) is as in Lemma 3.5), and A∗ project down to a subset of A. Then

A∗ ⊆ N . Fix γ ∈ A∗(κi). In N , let {(tα, µα, h
0
α) | α < si(γ)

++} be an
enumeration of (t, µ, h0) such that t ∈ P⟨tβi (γ)|β<i⟩, µ ∈ A∗ with µ(κi) = γ,

h0 ∈ Col(κ̄+i , si(γ)
+). Let Dγ be the collection (g, r) ∈ R∗

i such that for all
α < si(γ)

++,

• dom(µα) ⊆ dom(g).
• there is h1 ≥ H1(γ) such that if there are g′ ≥ g ⊕ µα, h

′ ≥ H1(γ),
and r′ ≥∗ r with

tα
⌢⟨g′, h0α, h′⟩⌢r′ ∈ D,

then

tα
⌢⟨g ⊕ µα, h

0
α, h

1⟩⌢r ∈ D.

Since R∗
i and Col(si(γ)

+3, < κi) are si(γ)
+3-closed, Dγ ∈ N is open dense

and is in N . By genericity, (f∗, r∗) ∈ Dγ with a witness h1. Define
(H1)∗(γ) = h1. Let qi be such that qi ↾ i = q′ ↾ i, qii = ⟨f∗, A∗, (H0)∗, (H1)∗⟩⌢r∗,
where (H0)∗(τ) = (H0)(τ ↾ dom(f)). qi has the following property: for each

µ ∈ Aqi

i , if t, g, h
0, h1 and r are such that

t⌢⟨g, h0, h1⟩⌢r ≥ qi + ⟨µ⟩, r ≥∗ (qi + ⟨µ⟩) \ (i+ 1)(which is qi \ (i+ 1)),

and

t⌢⟨g, h0, h1⟩⌢r ∈ D,

then

t⌢⟨f qi

i ⊕ µ, h0, (H1)q
i
(µ(κi))⟩⌢(qi \ (i+ 1)) ∈ D.

Recall that we take q∗ such that q∗i = qii for all i.

Claim 3.18. For all i < κ, µ ∈ Aq∗

i , if there are t, g, h0, h1, and r such that

t⌢⟨g, h0, h1⟩⌢r ≥ q∗ + ⟨µ⟩, r ≥∗ (q∗ + ⟨µ⟩) \ (i+ 1),

and

t⌢⟨g, h0, h1⟩⌢r ∈ D,

then
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t⌢⟨f q∗

i ⊕ µ, h0, (H1
i )

q∗(µ(κi))⟩⌢(q∗ \ (i+ 1)) ∈ D.

Proof. The claim is just a consequence of the property of qi for all i. □

Step B We now consider the following two cases:

Case 1: For each i < κ, the collection Bi of µ ∈ Aq∗

i such that “there

are t, h0 such that t ≥∗ (q∗ + ⟨µ⟩) ↾ i, h0 ≥ (H0
i )

q∗(µ), and t⌢⟨f q∗

i ⊕
µ, h0, (H1

i )
q∗(µ(κi))⟩⌢q∗ \ (i + 1) ∈ D” is of measure-zero. In this case,

let p1 be such that p1i = ⟨f q∗

i , B∗
i , (H

0
i )

q∗ ↾ B∗
i , (H

1
i )

q∗ ↾ (B∗
i (κi))⟩, where

B∗
i = Aq∗

i \Bi.
Case 2: The negation of Case 1. This means that there is i < κ, a

measure-one set B ⊆ Aq∗

i such that for each µ ∈ B, there are t = t(µ) and

h0 = h0(µ) such that t ≥∗ (q∗ + ⟨µ⟩) ↾ i and h0 ≥ (H0
i )

q∗(µ) such that

t⌢⟨f q∗

i ⊕ µ, h0, (H1
i )

q∗(µ(κi))⟩⌢(q∗ \ (i+ 1)) ∈ D.

Let i be the least such. Use Lemma 3.15 with t(µ) and h0(µ) to obtain p1

such that for all τ ∈ Ap1

i with µ = τ ↾ dq
∗

i , (p1 ↾ i)τ = t(µ) and (H0
i )

p1(τ) =
h0(µ).

We now have that p1 ≥∗ p and for τ ∈ Ap1

i , (p1 ↾ i)τ = t(τ ↾ dq
∗

i ). With
the property of q∗, one can check that if there is a direct extension of a one-
step extension of p1 entering D, then every one-step extension of p1 using

an object in Ap1

i is in D. If this is the case, let p∗ = p1, and then we are
done.

Stage n(1 < n < ω):

Remark 3.19. Note that the proof for Stage 1 holds for any condition. Fur-
thermore, by induction hypothesis, we will assume that for any condition
r (in any slight variation of the long extender-based forcing with collapses,
e.g. PE⃗\i for some i), and a dense open set D∗, for k < n, there is r∗ ≥∗ r

such that if there is a direct extension of a k-step extension of r∗ entering
D∗, then there is a (k, r∗)-fat tree S∗ fully compatible with r∗ such for every
τ⃗ ∈ S∗ maximal, r∗ + τ⃗ ∈ D∗. The statement holds for the exact proof as
in Stage 1.

step A This will be similar to step A in Stage 1, except that the dense

sets we are considering in this stage are more complicated. Suppose pk has
been constructed for k < n. Assume that if there is an n− 1-step extension
of pn−1 being in D, then there is (pn−1, n− 1)-fat tree fully compatible with
pn−1 such that every extension of pn−1 using a maximal node in the tree
belongs to D. Let p′ = pn−1.

Build a ≤∗-increasing sequence ⟨qi | i < κ⟩ such that

(1) p′ ≤∗ q0.

(2) for i′ < i, qii′ = qi
′
i′ .
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Again, we take q∗ such that q∗i = qii for all i and q∗ will satisfy a certain
property. Fix i < κ, and assume for i′ < i, qi′ is constructed. Let q′ be the
least ≥∗-upper bound of ⟨qi′ | i′ < i⟩. Hence, for i′ < i, q′i′ = qi

′
i′ . Write

q′i = ⟨f,A,H0, H1⟩, d = dom(f). Let R∗
i be as in Stage 1 and

Ri = {(g, r) | g ∈ Add(κ++, κ+i ), r ∈ (P⟨Eβ |β>i⟩,≤), and

dom(g) is a subset of the domains of Cohen parts in r}.

Note that Ri and R∗
i , as sets, are equal. The difference is the ordering. Let

N ≺ Hθ for some sufficiently large θ, <κiN ⊆ N , κi,P,R∗
i ,Ri, D, q′ ∈ N ,

|N | = κi, κi + 1 ⊆ N , and let ⟨(fα, rα) | α < κi⟩ be an R∗
i -increasing

sequence above (f, q′ \ (i+1)) such that every dense set contains an element
in the sequence, and every proper initial segment of the sequence is in N .
By letting f∗ = ∪α<κifα, and r∗ the least ≤∗-upper bound of ⟨rα | α < κ⟩,
then (f∗, r∗) is (N,R∗

i )-generic in the strong sense, as described in Stage 1,
Step A. Let d∗ = dom(f∗) = N ∩κ++, A∗ ∈ Ei(d

∗) project down to a subset
of A and A∗ ⊆ Ai(d

∗). Then A∗ ⊆ N .
Fix γ ∈ A∗(κi). In N , for each µ, define

D̄µ = {(g, r, h1) ≥Ri×Col(si(γ)+3,<κi) (f ⊕ µ, q′ \ (i+ 1), H0(γ)) | there are

t ≥ (q′ ↾ i)µ, h0 ≥ (H0)(µ ↾ d) with t⌢⟨g, h0, h1⟩⌢r ∈ D}.

Clearly D̄µ ∈ N is open dense in Ri × Col(si(γ)
+3, < κi) above (f ⊕ µ, q′ \

(i + 1), H0(γ)). We now define Dγ as the collection of (g, r) ∈ R∗
i such

that there is (h1)∗ ≥ (H1
i )(γ) satisfying the following requirement: for each

µ ∈ A∗ with µ(κi) = γ,

• dom(µ) ⊆ dom(g).
• for all t ≥∗ (q′ ↾ i)µ, h0 ≥ H0(γ), if there are g′ ≥ g ⊕ µ, h1 ≥ (h1)∗

a ∈ [{ξ | i < ξ < κ}]n−1, τ⃗ ∈
∏

β∈aA
r
β, and r′ ≥∗ r + τ⃗ such that

t⌢⟨g′, h0, h1⟩⌢r′ ∈ D̄µ,

then there is a (r, n − 1)-fat tree T such that for every maximal
τ⃗ ∈ T ,

t⌢⟨g ⊕ µ, h, (h1)∗⟩⌢(r + τ⃗) ∈ D̄µ.

By our induction hypothesis as in Remark 3.19 (we apply the remark with
PE⃗\(i+1)), the property of pn−1, and the fact that the number of such t and h0

is at most si(γ)
+2, which is below the closure of R∗

i and Col(si(γ)
+3, < κi),

we have that Dγ is open dense in N . Hence, (f∗, r∗) ∈ Dγ , we obtain a
witness (h1)∗ =: (h1)γ . Let (H1)∗(γ) = (h1)γ . Let qi be such that qi ↾
i = q′ ↾ i, qii = ⟨f∗, A∗, (H0)∗, (H1)∗⟩⌢r∗, where, (H0)∗(τ) = (H0)(τ ↾ d).
Recall that we take q∗ as the least ≤∗-upper bound of ⟨qi | i < κ⟩. We have

that q∗ has the follow property: Fix i < κ and µ ∈ Aq∗

i . Then,

• either for every t ≥ (q∗ ↾ i)µ, h0 ≥ (H0
i )

q∗ , a ∈ [{ξ | i < ξ < κ}]n−1,

and τ⃗ ∈
∏

β∈aA
q∗

β , we have that t⌢⟨f q∗

i ⊕µ, h0, (H1
i )

q∗(µ(κi))⟩⌢(q∗\
(i+ 1)) ̸∈ D,
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• or there are t ≥ (q∗ ↾ i)µ, h
0 ≥ (H0

i )
q∗ , and a fat tree T of height

n− 1 (not necessarily fully compatible with q∗) such that for every

τ⃗ ∈ T maximal, t⌢⟨f q∗

i ⊕ µ, h0, (H1
i )

q∗(µ(κi))
⌢r⃗ ∈ D.

The reason that in the latter case, T might not be fully compatible with
q∗ is that by the property of D

µ↾dq
i

i

, there is an (n− 1, q∗ \ (i+ 1))-fat tree

fully compatible with q∗ such that for each τ⃗ maximal in the tree, there are
witnesses t =: tτ⃗ and h0 =: h0τ⃗ . We then use Lemma 3.14 to shrink the fat
tree to get the fixed t and h0.

Step B By the Prikry property (see Remark 3.17) we have a possibility

to choose s ≥∗ (q∗ ↾ i)µ and h0 ≥ (H0
i )

q∗ so that we have the following two
cases.

Case 1: For all i < κ, the collection Bi of µ ∈ OBi(d
q∗

i ) such that “for

every t ≥∗ (q∗ ↾ i)µ, h0 ≥ (H i
0)

q∗(µ), a ∈ [{ξ | i < ξ < κ}]n−1 and

τ⃗ ∈
∏

β∈aA
q∗

β with t⌢⟨f q∗

i ⊕ µ, h, (H i
i )

q∗(µ(κi))⟩⌢(q∗ \ (i+ 1)) + τ⃗ ̸∈ D” is

of measure-one. For this case, let pn be obtained from q∗ by shrink Aq∗

i to
Bi.

Case 2: There is i < κ such that the collection of Bi of µ such that “there
are t ≥∗ (q∗ ↾ i)µ, h0 ≥ (H i

0)
q∗(µ), and a (n−1, q∗\(i+1))-fat tree T such that

for each τ⃗ ∈ T maximal, t(µ)⌢f q∗

i ⊕µ, h0, (H1
i )

q∗(µ(κi))⟩⌢(q∗\(i+1))+ τ⃗ ∈
D” is of measure-one. Assume i is the least such. For each µ, let t = t(µ)
and h0 = h0(µ) and T = T (µ) be the witnesses for the property. Use Lemma

3.15 to obtain pn ≥∗ q so that for every τ ∈ Apn

i , (pn ↾ i)τ = t(τ ↾ dq
∗

i ),
and there is a (n − 1, pn)-fat tree T ∗(τ) which projects down to a subtree

of T (τ ↾ dq
∗

i ). Let T be such that Level0(T ) ∈ Ei(d
pn

i ), Level0(T ) projects
down to a subset of Bi, and for τ ∈ Level0(T ), Tτ = T ∗(τ). Shrink all
relevant measure-one sets in pn so that all relevant objects appear in T , and
finally, shrink T to be fully compatible with pn.

We conclude the following property of pn: if there is a direct extension of
an n-step extension of pn entering D, then there is a (pn, n)-fat tree T which
is compatible with pn such that for every maximal node τ⃗ ∈ T , pn + τ⃗ ∈ D.

Now, let p∗ be a ≥∗-upper bound of ⟨pn | n < ω⟩. If q ≥ p∗ and q ∈ D,
then q ≥∗ p∗ + τ⃗ for some ρ. Say |τ⃗ | = n. Assume that n > 1 (the case
n = 1 is slightly simpler). This implies that q ≥∗ p∗ + τ⃗ ≥ pn + τ⃗ ′, where τ⃗ ′

is obtained by restricting functions in τ⃗ properly. This implies that there is
an (pn, n)-tree T such that for every µ⃗ ∈ T maximal, pn + µ⃗ ∈ D. Let T ∗

be a pullback of T so that T ∗ is fully compatible with p∗. Then for every
µ⃗ ∈ T ∗ maximal, p∗ + µ⃗ ∈ D.

□

Corollary 3.20. (PE⃗ ,≤,≤∗) has the Prikry property. Namely for each
forcing statement φ and a condition p, there is p∗ ≥∗ p that either p∗ ⊩ φ
or p∗ ⊩ ¬φ.
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Proof. Let D = {q | q ⊩ φ or q ⊩ ¬φ}. Let p∗ ≥∗ p and a fat tree T
fully compatible with p∗ witnessing the strong Prikry property for D. By
shrinking measure-one sets and the fat tree as in Lemma 3.14, we may
assume that either for all maximal µ⃗ ∈ T , p + µ⃗ ⊩ φ, or for all maximal
µ⃗ ∈ T , p + µ⃗ ⊩ φ. Let q ≥ p∗ be such that q decides φ. Without loss of
generality, assume q ⊩ φ. Extend if necessary, assume q ≥ p∗ + µ⃗ for some
maximal µ⃗ ∈ T . This means that for every maximal τ⃗ ∈ T , p∗+τ⃗ ⊩ φ. Since
{p∗ + τ⃗ | τ⃗ ∈ T is maximal} is predense above p∗, we have that p∗ ⊩ φ. □

Following the standard arguments of factorization, Prikry property, and
the strong Prikry property, we have the following cardinal arithmetic

Theorem 3.21. After forcing with P⟨Ei|i<κ⟩, we have that

(1) κ is the first inaccessible cardinal.
(2) GCH holds for every regular cardinal below κ. Each singular cardinal

below κ is a strong limit, and SCH fails for every singular cardinal
below κ.

(3) for every singular cardinal λ < κ, uλ = λ+ < λ++ = 2λ.

Proof. (1) Note that κ is strong limit. If κ is singular, then let p ∈ PE⃗ ,

α < κ, and ḟ be a P-name such that p ⊩ ḟ : α → κ is cofinal.
Extend p if necessary, assume α + 1 ∈ Supp(p). Forcing above p
factors to P0 × P1 where |P0| = sα+1(f

p
α+1(κα+1))

+2 and (P1,≤∗)

is sα+1(f
p
α+1(κα+1))

+3-closed. By the Prikry property and by theo
closure, we can find q ≥∗ p ↾ P1 such that for each γ < α, there is a
maximal antichain Aγ ⊆ P0 above p ↾ P0 such that for every r ∈ Aγ ,

r⌢q decides ḟ(γ). In V , let X = {ξ | ∃γ∃r ∈ Aγ(r
⌢q ⊩ ḟ(γ) = ξ)}.

Then |X| < κ and (p ↾ P0)
⌢q ⊩ rng(ḟ) ⊆ X, which is a contrau

(2) Follow the same analysis as in [14].
(3) The argument is similar to Theorem 2.17 except that we apply the

version of the strong Prikry property in this section.
□

Remark 3.22. Since the forcing is κ++-c.c., all cardinals above and including
κ++ are preserved. One can follow the argument in [1] to show that κ+ is
also preserved.

Corollary 3.23. It is consistent that GCH holds at every regular and SCH
fails at every singular λ while uλ = λ+.

Proof. From the previous model V P⟨Ei|i<κ⟩ , just take M = (V P⟨Ei|i<κ⟩)κ
which is a ZFC model (by inaccessibility of κ) which exhibit the corol-
lary. □

Corollary 3.24. It is consistent that an inaccessible κ satisfy uκ > κ+ while
there is club C ⊆ κ such that for every λ ∈ C, uλ = λ+ < 2λ.
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Proof. From the model V P⟨Ei|i<κ⟩ force with Add(κ, κ++), then by the κ-
closure of the forcing we did not change uλ for λ < κ and uκ = κ++ in the
extension. □

4. Open problems

Question 4.1. What is uκ in the model of theorem 3.21?
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